Discrete & Computational Geometry

, Volume 3, Issue 1, pp 55–72 | Cite as

Tiling the torus and other space forms

  • Marjorie Senechal
Article

Abstract

We consider graphs on two-dimensional space forms which are quotient graphs Γ/F, where Γ is an infinite, 3-connected, face, vertex, or edge transitive planar graph andF is a subgroup of Aut(Γ), all of whose elements act freely on Γ. The enumeration of quotient graphs with transitivity properties reduces to computing the normalizers in Aut(Γ) of the subgroupsF. Results include: all isogonal toriodal polyhedra belong to the two families found by Grünbaum and Shephard; there are no transitive graphs on the Möbius band; there is a graph on the Klein bottle whose automorphism group acts transitively on its faces, edges, and vertices.

Keywords

Space Form Klein Bottle Invariant Subgroup Transitivity Property Quotient Graph 

References

  1. 1.
    U. Brehm, Personal communication.Google Scholar
  2. 2.
    R. O. Erickson, Tubular packing of spheres in biological fine structure,Science 181 (1973), 705–716.CrossRefGoogle Scholar
  3. 3.
    E. Gethner and J. P. Hutchinson, Platonic graphs on the torus, unpublished.Google Scholar
  4. 4.
    B. Grünbaum and G. C. Shephard, The eighty-one types of isohedral tilings in the plane,Math. Proc. Cambridge Philos. Soc. 82 (1977), 177–196.MathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Grünbaum and G. C. Shephard, The ninety-one types of isogonal tilings in the plane,Trans. Amer. Math. Soc. 242 (1978), 335–553.MathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Grünbaum and G. C. Shephard, Isotoxal tilings,Pacific J. Math. 76 (1978), 407–430.MathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Grünbaum and G. C. Shephard, The geometry of planar graphs, inCombinatorics (H. N. Y. Temperly, ed.) (Eight British Combinatorial Conference, Swansea 1981), 124–150, Cambridge University Press, Cambridge, 1981.CrossRefGoogle Scholar
  8. 8.
    B. Grünbaum and G. C. Shephard, A hierarchy of classification methods for patterns,Z. Krist. 154 (1981), 163–187.MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Grünbaum and G. C. Shephard, Polyhedra with transitivity properties,Math. Rep. Canad. Acad. Sci. VI (1984), 61–66.Google Scholar
  10. 10.
    G. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, 4th ed, 26–29, Oxford, 1960.Google Scholar
  11. 11.
    H. Heesch, Uber topologisch gleichwertige Kristallbindungen,Z. Krist. 84 (1933), 399–407.Google Scholar
  12. 12.
    K. Hermann, Zur systematischen Struktur Theorie. IV. Untergruppen,Z. Krist. 69 (1929), 533–555.Google Scholar
  13. 13.
    J. P. Hutchinson, Automorphism properties of embedded graphs,J. Graph Theory 8 (1984), 35–49.MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. V. Jarić and M. Senechal, Space groups and their isotropy subgroups,J. Math. Phys. 25 (1984), 3148–3154.MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Kepler,Harmonices Mundi, 1619.Google Scholar
  16. 16.
    E. Koch and W. Fischer, Types of sphere packings for crystallographic point groups, rod groups, and layer groups,Z. Krist. 148 (1978), 107–152.MathSciNetCrossRefGoogle Scholar
  17. 17.
    W. Kuhnel and G. Lassmann, The rhombidodecahedral tessellation of 3-space and a particular 15-vertex triangulation of the 3-dimensional torus,Manuscripta Math. 49 (1984), 61–77.MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Laves, Ebenenteilungen and Koordinationszahl,Z. Krist. 78 (1931), 208–241.Google Scholar
  19. 19.
    M. Senechal, Color groups,Discrete Appl. Math. 1 (1979), 51–73.MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Senechal, A simple characterization of the subgroups of space groups,Acta Cryst. Sect. A 36 (1980), 845–850.MathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Senechal, Morphisms of crystallographic groups: kernels and images,J. Math. Phys. 26 (1985), 219–228.MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. A. Wolf,Spaces of Constant Curvature, 4th ed., Publish or Perish, Berkeley, 1977.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Marjorie Senechal
    • 1
  1. 1.Department of MathematicsSmith CollegeNorthamptonUSA

Personalised recommendations