Discrete & Computational Geometry

, Volume 2, Issue 1, pp 1–8 | Cite as

On lattices with M:obius function ±1, 0

  • Jeff Kahn


We provide simple arguments of a geometric nature to explain why the Möbius functions of certain lattices take only the values −1, 0, 1.


Simplicial Complex Discrete Comput Geom Face Lattice Network Reliability Oriented Matroids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Aigner,Combinatorial Theory, Springer-Verlag, New York, 1979.CrossRefGoogle Scholar
  2. 2.
    M. R. Best, P. van Emde Boas, and H. W. Lenstra, Jr., A sharpened version of the Aanderaa-Rosenberg conjecture,Math. Centrum, Amsterdam, 1974.Google Scholar
  3. 3.
    B. Bollobas,Extremal Graph Theory, Academic Press, London, 1978.Google Scholar
  4. 4.
    R. Cordovil, A combinatorial perspective on the non-Radon partitions,J. Combin. Theory Ser. A 38 (1985), 38–47.MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. H. Edelman, The acyclic sets of an oriented matroid,J. Combin. Theory Ser. B 36 (1984), 26–31.MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Greene, A class of lattices with Mobius function ±1, 0, preprint.Google Scholar
  7. 7.
    J. Hagstrom, Combinatorial properties for directed network reliability with a path length criterion, preprint.Google Scholar
  8. 8.
    J. Kahn, M. Saks, and D. Sturtevant, A topological approach to evasiveness,Combinatorica 4 (1984), 297–306.MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Kahn and D. Sturtevant, Reliability and Möbius functions, preprint.Google Scholar
  10. 10.
    M. Las Vergnas, Convexity in oriented matroids,J. Combin. Theory. Ser. B 29 (1980), 231–243.MathSciNetCrossRefGoogle Scholar
  11. 11.
    E. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.Google Scholar
  12. 12.
    R. L. Rivest and J. Vuillemin, On recognizing graph properties from adjacency matrices,Theoret. Comput. Sci. 3 (1976), 371–384.MathSciNetCrossRefGoogle Scholar
  13. 13.
    G.-C. Rota, On the foundations of combinatorial theory I: theory of Möbius functions,Z. Wahrsch. Verw. Gebiete 2 (1964), 340–368.MathSciNetCrossRefGoogle Scholar
  14. 14.
    G.-C. Rota, On the combinatorics of the Euler characteristic, inStudies in Pure Mathematics (L. Mirsky, ed.), 221–233, Academic Press, London, 1971.Google Scholar
  15. 15.
    A. Satyanarayana, A unified formula for analysis of some network reliability problems,IEEE Trans. Reliability 31 (1982), 23–32.CrossRefGoogle Scholar
  16. 16.
    A. Satyranarayana and J. Hagstrom, Combinatorial properties of directed graphs useful in computing network reliability,Networks 11 (1981), 357–366.MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Satyanarayana and A. Prabhakar, A new topological formula and rapid algorithm for reliability analysis of complex networks,IEEE Trans. Reliability 27 (1978), 82–100.MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Willie, A theorem concerning cyclic directed graphs with applications to network reliability,Networks 10 (1980), 71–78.MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Cordovil, M. Las Vergnas, and A. Mandel, Euler's relation, Möbius functions and matroid identities,Geom. Dedicata 12 (1982), 147–162.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Jeff Kahn
    • 1
  1. 1.Department of Mathematics and Center for Operations ResearchRutgers UniversityNew BrunswickUSA

Personalised recommendations