Skip to main content
Log in

CP non-violation in neutral K-meson decay: A non-standard explanation

  • Published:
Foundations of Physics Letters

Abstract

A recently presented concept, where, in the framework of parametrized relativistic quantum field theory, antiparticles are described consistently with negative frequencies, but positive energy density, is used to analyse the decay of neutralK-mesons, where the experimental results usually are interpreted as an evidence forCP-violation. In the theory presented the charge conjugation is antilinear, as in original Dirac theory, and theCPT-transformation is unitary. The Hamiltonian is indefinite, and changes sign under theCPT-transformation, since positive and negative eigenvalues are interchanged. As a result the eigenstates of the Hamiltonian are notCPT-eigenstates. The interference of positive and negative frequencies leads to a mixing ofCPT-eigenstates, as is observed in experiment. The study of a simple model system shows that the proposed mechanism of dynamical mixing offers an explanation for the experiments on theK 0\(\bar K\) 0-meson system, with respect to both the observed mixing of eigenstates and the observed difference in the number of “CP-violating” events in the decays of the longer and shorter living neutralK-mesonsK L andK S . No symmetry violation of the theory needs be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac,Proc. Roy. Soc. (London) A117 (1928) 610;A126 (1929), 360;Proc. Camb. Phil. Soc. 26 (1930) 361. H. Weyl,Theory of Groups and Quantum Mechanics (Methuen, London, 1931).

    Google Scholar 

  2. H. Arzelies,Relativistic Point Dynamics (Pergamon, Oxford, 1972). N. A. Doughty,Lagrangian Interaction (Addison-Wesley, Sydney, 1990).

    Google Scholar 

  3. N. N. Bogolubov, A. A. Logunov, and I. T. Todorov,Introduction to Axiomatic Quantum Field Theory (Benjamin, London, 1975).

    Google Scholar 

  4. R. F. Streater and A. S. Wightman,PCT, Spin & Statistics, and All That (Benjamin, New York, 1963).

    Google Scholar 

  5. M. Reed and B. Simon,Methods of Modern Mathematical Physics Vol II: Fourier Analysis, Self-Adjointness (Academic, New York, 1975).

    Google Scholar 

  6. L. Hannibal,Int. J. Theor. Phys. 30, 1431 (1991).

    Google Scholar 

  7. L. Hannibal,Int. J. Theor. Phys. 30, 1445 (1991).

    Google Scholar 

  8. L. Hannibal,Rep. Math. Phys. 33 77 (1993).

    Google Scholar 

  9. L. Hannibal,Found. Phys. Lett. 7, 551 (1994).

    Google Scholar 

  10. E. C. G. Stueckelberg,Helv. Phys. Acta 14, 322, 588 (1941);15, 23 (1942).

    Google Scholar 

  11. R. P. Feynman,Phys. Rev. 74, 939 (1948);80, 440 (1950).

    Google Scholar 

  12. J. Schwinger,Phys. Rev. 82, 664 (1951).

    Google Scholar 

  13. L. P. Horwitz and C. Piron,Helv. Phys. Acta 46, 316 (1973).

    Google Scholar 

  14. J. R. Fanchi,Phys. Rev. D 20, 3018 (1979).

    Google Scholar 

  15. L. Hostler,J. Math. Phys. 21, 2461 (1980);22, 2307 (1981). R. Kubo,Nuovo Cimento 85A, 293 (1985). M. Pavšič,Nuovo Cimento 104A, 1337 (1991).

    Google Scholar 

  16. J. R. Fanchi,Found. Phys. 23, 487 (1993); J. R. Fanchi,Parametrized Relativistic Quantum Theory (Kluwer, Dordrecht, 1993), and references therein.

    Google Scholar 

  17. J. P. Aparicio, F. H. Gaioli, and E. T. G. Alvarez,Phys. Rev. A 51, 96 (1995);Phys. Lett. A 200, 233 (1995).

    Google Scholar 

  18. L. P. Horwitz, R. I. Arshansky, and A. C. Elitzur,Found. Phys. 18, 1159 (1988).

    Google Scholar 

  19. L. P. Horwitz,Found. Phys. 22, 421 (1992).

    Google Scholar 

  20. D. M. Greenberger,J. Math. Phys. 11, 2329, 2341 (1970);J. Math. Phys. 15, 395, 406 (1974); A. Kyprianidis,Phys. Rep. 155, 1 (1987).

    Google Scholar 

  21. D. Saad, L. P. Horwitz, and R. I. Arshansky,Found. Phys. 19, 1125 (1989).

    Google Scholar 

  22. J. E. Johnson,Phys. Rev. 181, 1755 (1969).

    Google Scholar 

  23. L. P. Horwitz and R. Arshansky,J. Phys. A: Math. Gen. 15, L659 (1982).

    Google Scholar 

  24. G. C. Hegerfeldt,Phys. Rev. D 10, 3320 (1974);Phys. Rev. Lett. 54, 2395 (1980).

    Google Scholar 

  25. G. C. Hegerfeldt and S. M. N. Ruijsenaars,Phys. Rev. D 22, 377 (1980).

    Google Scholar 

  26. A. S. Wightman and S. S. Schweber,Phys. Rev 98, 812 (1955); J. D. Bjorken and S. D. Drell,Relativistic Quantum Fields (McGraw-Hill, New York, 1965). C. Itzykson and J. B. Zuber,Quantum Field Theory (McGraw-Hill, New York, 1980).

    Google Scholar 

  27. S. Gasiorowicz,Elementary Particle Physics (Wiley, New York, 1966), Chap. 1.

    Google Scholar 

  28. S. Weinberg,Gravitation and Cosmology (Wiley, New York, 1972), Chap. 2, Sec. 13.

    Google Scholar 

  29. G. D. McFall and P. F. Zweifel, “The EPR paradox revisited: Locality, independence, interaction and hidden variables,” presented in Workshop on Advances in Physics, Dacca, Bangladesh, Jan. 15–19, 1990.

  30. J. H. Christensen, J. W. Cronin, V. L. Fitch, and R. Turlay,Phys. Rev. Lett. 13, 138 (1964). L. K. Gibbons et al.,Phys. Rev. Lett. 70, 1199 and 1203 (1993).

    Google Scholar 

  31. Particle Data Group, L. Montanet et al.,Phys. Rev. D 50, 1173 (1994) and references therein.

    Google Scholar 

  32. V. Barmin et al.,Nucl. Phys. B247, 293 (1984). L. Wolfenstein,Ann. Rev. Nuc. Sci. 36, 137 (1986).

    Google Scholar 

  33. E. D. Commins and P. H. Bucksbaum,Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  34. J. L. Rosner, “Heavy quarks, quark mixing and CP violation,” inTesting the Standard Model, M. Cvetič and P. Langacker, eds. (World Scientific, Singapore 1991), p.91, and references therein.

    Google Scholar 

  35. M. Kobayashi and T. Maskawa,Prog. Theor. Phys. Japan 49, 652 (1973). J. Ellis, M. K. Gaillard, and D. V. Nanopoulos,Nucl. Phys. B 106, 292 (1976).

    Google Scholar 

  36. L. P. Horwitz, C. Piron, and F. Reuse,Helv. Phys. Acta 48, 546 (1975).

    Google Scholar 

  37. A. Arensburg and L. P. Horwitz,Found. Phys. 22, 1025 (1992).

    Google Scholar 

  38. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

    Google Scholar 

  39. E. Wigner,Ann. Math. 40, 149 (1949). M. A. Naimark,Linear Representations of the Lorentz Group (Pergamon, New York, 1964).

    Google Scholar 

  40. H. Quinn, in Ref. [31], p. 1632, and references therein.

    Google Scholar 

  41. T. T. Wu and C. N. Yang,Phys. Rev. Lett. 13, 380 (1964).

    Google Scholar 

  42. T. D. Lee, R. Oehme, and C. N. Yang,Phys. Rev. 106, 340 (1957).

    Google Scholar 

  43. V. F. Weisskopf and E. P. Wigner,Z. Phys. 63, 54 (1930);65, 18 (1930).

    Google Scholar 

  44. K. Igi and S. Ono,Phys. Rev. D 33, 3349 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannibal, L. CP non-violation in neutral K-meson decay: A non-standard explanation. Found Phys Lett 8, 309–326 (1995). https://doi.org/10.1007/BF02187812

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02187812

Key words

Navigation