Discrete & Computational Geometry

, Volume 5, Issue 3, pp 289–304 | Cite as

Computing simple circuits from a set of line segments

  • David Rappaport
  • Hiroshi Imai
  • Godfried T. Toussaint


We address the problem of connecting line segments to form the boundary of a simple polygon—a simple circuit. However, not every set of segments can be so connected. We present anO(n logn)-time algorithm to determine whether a set of segments, constrained so that each segment has at least one endpoint on the boundary of the convex hull of the segments, admits a simple circuit. Furthermore, this technique can also be used to compute a simple circuit of minimum perimeter, or a simple circuit that bounds the minimum area, with no increase in computational complexity.


Line Segment Convex Hull Discrete Comput Geom Weighted Graph Simple Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Avis and D. Rappaport, Computing monotone simple circuits in the plane, inComputational Morphology (G. Toussaint, ed.), 13–23, North-Holland, Amsterdam (1988).Google Scholar
  2. 2.
    J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric intersections,IEEE Trans. Comput. 28, 9 (1979), 643–647.CrossRefMATHGoogle Scholar
  3. 3.
    N. Friedman, Some results on the effect of arithmetics on comparison problems,Proc. 13th IEEE Symp. Switching Automata Theory (1972), 139–142.Google Scholar
  4. 4.
    M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar Hamiltonian circuit problem is NP-complete,SIAM J. Comput. 5 (1976), 704–714.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set,Inform. Process. Lett. 1 (1972), 132–133.CrossRefMATHGoogle Scholar
  6. 6.
    J. E. Hopcroft and R. M. Karp, Ann 5/2 algorithm for maximum matchings in bipartite graphs,SIAM J. Comput. 2 (1973), 225–231.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    R. M. Karp, On the complexity of combinatorial problems,Networks 5 (1975), 45–68.MathSciNetMATHGoogle Scholar
  8. 8.
    D. Kirkpatrick and R. Seidel, The ultimate convex hull algorithm,SIAM J. Comput. 15 (1986), 287–299.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. McQueen and G. T. Toussaint, On the ultimate convex hull algorithm in practice,Pattern Recognition Lett. 3 (1985), 29–34.CrossRefGoogle Scholar
  10. 10.
    D. Rappaport, The Complexity of Computing Simple Circuits in the Plane, Ph.D. thesis, McGill University (1986).Google Scholar
  11. 11.
    D. Rappaport, Computing simple circuits from a set of line segments is NP-complete,Proc. 3rd ACM Symp. Comput. Geom. (1987), 322–330.Google Scholar
  12. 12.
    M. I. Shamos, Geometric complexity,Proc. 7th ACM Annu. Symp. Theory Comput. (1975), 224–233.Google Scholar
  13. 13.
    M. I. Shamos and D. Hoey, Geometric intersection problems,Proc. 17th IEEE Annu. Symp. Found. Comput. Sci. (1976), 208–215.Google Scholar
  14. 14.
    S. Suri, Personal communication (1986).Google Scholar
  15. 15.
    R. E. Tarjan and C. Van Wyk, AnO(n log logn) algorithm for triangulating a simple polygon,SIAM J. Comput. 17 (1988), 143–178.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. T. Toussaint, A historical note on convex hull finding algorithms,Pattern Recognition Lett. 3 (1985), 21–28.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • David Rappaport
    • 1
  • Hiroshi Imai
    • 2
  • Godfried T. Toussaint
    • 3
  1. 1.Department of Computing and Information ScienceQueen's UniversityKingstonCanada
  2. 2.Department of Computer Science and Communication Engineering, Faculty of EngineeringKyushu UniversityHakozaki, FukuokaJapan
  3. 3.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations