Agarwal, P. K. An efficient algorithm for partitioning arrangements of lines and its applications. InProc. 5th ACM Symp. Comput. Geom., 1989, pp. 11–22.
Aronov, B., Edelsbrunner, H., Guibas, L., and Sharir, M. Improved bounds on the number of edges of many faces in arrangements of line segments. Report UIUCDCS-R-89-1527, Department of Computer Science, University of Illinois, Urbana, Illinois, 1989.
Google Scholar
Aronov, B., and Sharir, M. Triangles in space, or: Building (and analyzing) castles in the air. InProc. 4th ACM Symp. Comput. Geom., 1988, pp. 381–391.
Bentley, J. L., and Ottmann, T. A. Algorithms for reporting and counting geometric intersections.IEEE Trans. Comput.
28 (1979), 643–647.
Article
MATH
Google Scholar
Canham, R. J. A theorem on arrangements of lines in the plane.Isreal J. Math.
7 (1969), 393–397.
MathSciNet
Article
MATH
Google Scholar
Chazelle, B., and Dobkin, D. P. Intersection of convex objects in two and three dimensions.J. Assoc. Comput. Mach.
34 (1987), 1–27.
MathSciNet
Article
Google Scholar
Clarkson, K. New applications of random sampling in computational geometry.Discrete Comput. Geom.
2 (1987), 195–222.
MathSciNet
Article
MATH
Google Scholar
Clarkson, K., Edelsbrunner, H., Guibas, L. J., Sharir, M., and Welzl, E. Combinatorial complexity bounds for arrangements of curves and spheres.Discrete Comput. Geom., this issue, 99–160.
Cole, R., Sharir M., and Yap, C. K. Onk-hulls and related problems.SIAM J. Comput.
16 (1987), 61–77.
MathSciNet
Article
MATH
Google Scholar
Edelsbrunner, H.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.
Book
MATH
Google Scholar
Edelsbrunner, H., Guibas, L. J., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., and Welzl, E. Implicitly representing arrangements of lines or segments.Discrete Comput. Geom.
4 (1989), 433–466.
MathSciNet
Article
MATH
Google Scholar
Edelsbrunner, H., Guibas, L. J., and Sharir, M. The complexity of many cells in arrangements of planes and related problems.Discrete Comput. Geom., this issue, 197–216.
Edelsbrunner, H., Guibas, L. J., and Stolfi, J. Optimal point location in a monotone subdivision.SIAM J. Comput.
15 (1986), 317–340.
MathSciNet
Article
MATH
Google Scholar
Edelsbrunner, H., O'Rourke, J., and Seidel, R. Constructing arrangements of lines and hyperplanes with applications.SIAM J. Comput.
15 (1986), 341–363.
MathSciNet
Article
MATH
Google Scholar
Edelsbrunner, H., and Sharir, M. The maximum number of ways to stabn convex nonintersecting sets in the plane is 2n − 2.Discrete Comput. Geom.
5 (1990), 35–42.
MathSciNet
Article
MATH
Google Scholar
Edelsbrunner, H., and Welzl, E. On the maximal number of edges of many faces in an arrangement.J. Combin. Theory Ser. A
41 (1986), 159–166.
MathSciNet
Article
MATH
Google Scholar
Edelsbrunner, H., and Welzl, E. Halfplanar range search in linear space andO(n
0.695) query time.Inform. Process. Lett.
23 (1986), 289–293.
Article
MATH
Google Scholar
Grünbaum, B.Convex Polytopes. Wiley, London, 1967.
MATH
Google Scholar
Guibas, L. J., Overmars, M. H., and Sharir, M. Counting and reporting intersections in arrangements of line segments. Tech. Report 434, Computer Science Department, NYU, 1989.
Google Scholar
Guibas, L. J., Sharir, M., and Sifrony, S. On the general motion planning problem with two degrees of freedom. InProc. 4th ACM Symp. Comput. Geom., 1988, pp. 289–298.
Hart, S., and Sharir, M. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica
6 (1986), 151–177.
MathSciNet
Article
MATH
Google Scholar
Haussler, D., and Welzl, E. Epsilon-nets and simplex range queries.Discrete Comput. Geom.
2 (1987), 127–151.
MathSciNet
Article
MATH
Google Scholar
Moise, E. E.Geometric Topology in Dimension 2 and 3. Springer-Verlag, New York, 1977.
Book
Google Scholar
O'Rourke, J. The signature of a plane curve.SIAM J. Comput.
15 (1986), 34–51.
MathSciNet
Article
MATH
Google Scholar
Pollack, R., Sharir, M., and Sifrony, S. Separating two simple polygons by a sequence of translations.Discrete Comput. Geom.
3 (1988), 123–136.
MathSciNet
Article
MATH
Google Scholar
Preparata, F. P., and Shamos, M. I.Computational Geometry—An Introduction. Springer-Verlag, New York, 1985.
Google Scholar
Schmitt, A., Müller, H., and Leister, W. Ray tracing algorithms—theory and practice. InTheoretical Foundations of Computer Graphics and CAD (R. A. Earnshaw, Ed.), NATO ASI Series, Vol. F40, Springer-Verlag, Berlin, 1988, pp. 997–1030.
Chapter
Google Scholar
Szemerédi, E., and Trotter, W. T. Extremal problems in discrete geometry.Combinatorica
3 (1983), 381–392.
MathSciNet
Article
MATH
Google Scholar
Wiernik, A., and Sharir, M. Planar realization of nonlinear Davenport-Schinzel sequences by segments.Discrete Comput. Geom.
3 (1988), 15–47.
MathSciNet
Article
MATH
Google Scholar