Skip to main content

The complexity and construction of many faces in arrangements of lines and of segments

Abstract

We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3−δ n 2/3+2δ+n) for anyδ>0. The proof takes an algorithmic approach, that is, we describe an algorithm for the calculation of thesem faces and derive the upper bound from the analysis of the algorithm. The algorithm uses randomization and its expected time complexity isO(m 2/3−δ n 2/3+2δ logn+n logn logm). If instead of lines we have an arrangement ofn line segments, then the maximum number of edges ofm faces isO(m 2/3−δ n 2/3+2δ+ (n) logm) for anyδ>0, whereα(n) is the functional inverse of Ackermann's function. We give a (randomized) algorithm that produces these faces and takes expected timeO(m 2/3−δ n 2/3+2δ log+(n) log2 n logm).

References

  1. Agarwal, P. K. An efficient algorithm for partitioning arrangements of lines and its applications. InProc. 5th ACM Symp. Comput. Geom., 1989, pp. 11–22.

  2. Aronov, B., Edelsbrunner, H., Guibas, L., and Sharir, M. Improved bounds on the number of edges of many faces in arrangements of line segments. Report UIUCDCS-R-89-1527, Department of Computer Science, University of Illinois, Urbana, Illinois, 1989.

    Google Scholar 

  3. Aronov, B., and Sharir, M. Triangles in space, or: Building (and analyzing) castles in the air. InProc. 4th ACM Symp. Comput. Geom., 1988, pp. 381–391.

  4. Bentley, J. L., and Ottmann, T. A. Algorithms for reporting and counting geometric intersections.IEEE Trans. Comput. 28 (1979), 643–647.

    Article  MATH  Google Scholar 

  5. Canham, R. J. A theorem on arrangements of lines in the plane.Isreal J. Math. 7 (1969), 393–397.

    MathSciNet  Article  MATH  Google Scholar 

  6. Chazelle, B., and Dobkin, D. P. Intersection of convex objects in two and three dimensions.J. Assoc. Comput. Mach. 34 (1987), 1–27.

    MathSciNet  Article  Google Scholar 

  7. Clarkson, K. New applications of random sampling in computational geometry.Discrete Comput. Geom. 2 (1987), 195–222.

    MathSciNet  Article  MATH  Google Scholar 

  8. Clarkson, K., Edelsbrunner, H., Guibas, L. J., Sharir, M., and Welzl, E. Combinatorial complexity bounds for arrangements of curves and spheres.Discrete Comput. Geom., this issue, 99–160.

  9. Cole, R., Sharir M., and Yap, C. K. Onk-hulls and related problems.SIAM J. Comput. 16 (1987), 61–77.

    MathSciNet  Article  MATH  Google Scholar 

  10. Edelsbrunner, H.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.

    Book  MATH  Google Scholar 

  11. Edelsbrunner, H., Guibas, L. J., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., and Welzl, E. Implicitly representing arrangements of lines or segments.Discrete Comput. Geom. 4 (1989), 433–466.

    MathSciNet  Article  MATH  Google Scholar 

  12. Edelsbrunner, H., Guibas, L. J., and Sharir, M. The complexity of many cells in arrangements of planes and related problems.Discrete Comput. Geom., this issue, 197–216.

  13. Edelsbrunner, H., Guibas, L. J., and Stolfi, J. Optimal point location in a monotone subdivision.SIAM J. Comput. 15 (1986), 317–340.

    MathSciNet  Article  MATH  Google Scholar 

  14. Edelsbrunner, H., O'Rourke, J., and Seidel, R. Constructing arrangements of lines and hyperplanes with applications.SIAM J. Comput. 15 (1986), 341–363.

    MathSciNet  Article  MATH  Google Scholar 

  15. Edelsbrunner, H., and Sharir, M. The maximum number of ways to stabn convex nonintersecting sets in the plane is 2n − 2.Discrete Comput. Geom. 5 (1990), 35–42.

    MathSciNet  Article  MATH  Google Scholar 

  16. Edelsbrunner, H., and Welzl, E. On the maximal number of edges of many faces in an arrangement.J. Combin. Theory Ser. A 41 (1986), 159–166.

    MathSciNet  Article  MATH  Google Scholar 

  17. Edelsbrunner, H., and Welzl, E. Halfplanar range search in linear space andO(n 0.695) query time.Inform. Process. Lett. 23 (1986), 289–293.

    Article  MATH  Google Scholar 

  18. Grünbaum, B.Convex Polytopes. Wiley, London, 1967.

    MATH  Google Scholar 

  19. Guibas, L. J., Overmars, M. H., and Sharir, M. Counting and reporting intersections in arrangements of line segments. Tech. Report 434, Computer Science Department, NYU, 1989.

    Google Scholar 

  20. Guibas, L. J., Sharir, M., and Sifrony, S. On the general motion planning problem with two degrees of freedom. InProc. 4th ACM Symp. Comput. Geom., 1988, pp. 289–298.

  21. Hart, S., and Sharir, M. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica 6 (1986), 151–177.

    MathSciNet  Article  MATH  Google Scholar 

  22. Haussler, D., and Welzl, E. Epsilon-nets and simplex range queries.Discrete Comput. Geom. 2 (1987), 127–151.

    MathSciNet  Article  MATH  Google Scholar 

  23. Moise, E. E.Geometric Topology in Dimension 2 and 3. Springer-Verlag, New York, 1977.

    Book  Google Scholar 

  24. O'Rourke, J. The signature of a plane curve.SIAM J. Comput. 15 (1986), 34–51.

    MathSciNet  Article  MATH  Google Scholar 

  25. Pollack, R., Sharir, M., and Sifrony, S. Separating two simple polygons by a sequence of translations.Discrete Comput. Geom. 3 (1988), 123–136.

    MathSciNet  Article  MATH  Google Scholar 

  26. Preparata, F. P., and Shamos, M. I.Computational Geometry—An Introduction. Springer-Verlag, New York, 1985.

    Google Scholar 

  27. Schmitt, A., Müller, H., and Leister, W. Ray tracing algorithms—theory and practice. InTheoretical Foundations of Computer Graphics and CAD (R. A. Earnshaw, Ed.), NATO ASI Series, Vol. F40, Springer-Verlag, Berlin, 1988, pp. 997–1030.

    Chapter  Google Scholar 

  28. Szemerédi, E., and Trotter, W. T. Extremal problems in discrete geometry.Combinatorica 3 (1983), 381–392.

    MathSciNet  Article  MATH  Google Scholar 

  29. Wiernik, A., and Sharir, M. Planar realization of nonlinear Davenport-Schinzel sequences by segments.Discrete Comput. Geom. 3 (1988), 15–47.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author is pleased to acknowledge partial support by the Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862 and the National Science Foundation under Grant CCR-8714565. Work on this paper by the third author has been supported by Office of Naval Research Grant N00014-82-K-0381, by National Science Foundation Grant DCR-83-20085, by grants from the Digital Equipment Corporation, and the IBM Corporation, and by a research grant from the NCRD-the Israeli National Council for Research and Development. A preliminary version of this paper has appeared in theProceedings of the 4th ACM Symposium on Computational Geometry, 1988, pp. 44–55.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edelsbrunner, H., Guibas, L.J. & Sharir, M. The complexity and construction of many faces in arrangements of lines and of segments. Discrete Comput Geom 5, 161–196 (1990). https://doi.org/10.1007/BF02187784

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02187784

Keywords

  • Line Segment
  • Blue Edge
  • Primal Plane
  • Sweep Line
  • Dual Plane