Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Discrete & Computational Geometry
  3. Article
Combinatorial complexity bounds for arrangements of curves and spheres
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Arrangements of Pseudocircles: On Circularizability

03 April 2019

Stefan Felsner & Manfred Scheucher

Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces

23 August 2019

Éric Colin de Verdière, Carolina Medina, … Gelasio Salazar

Arrangements of Pseudocircles: Triangles and Drawings

27 January 2020

Stefan Felsner & Manfred Scheucher

Nondegenerate Spheres in Four Dimensions

14 June 2022

Thao Do

On Grids in Point-Line Arrangements in the Plane

29 July 2020

Mozhgan Mirzaei & Andrew Suk

The complete enumeration of 4-polytopes and 3-spheres with nine vertices

23 September 2020

Moritz Firsching

Strongly regular configurations

06 July 2022

Marién Abreu, Martin Funk, … Domenico Labbate

On the Number of Ordinary Lines Determined by Sets in Complex Space

24 October 2018

Abdul Basit, Zeev Dvir, … Charles Wolf

New Bounds on the Dimensions of Planar Distance Sets

04 July 2019

Tamás Keleti & Pablo Shmerkin

Download PDF
  • Published: 01 March 1990

Combinatorial complexity bounds for arrangements of curves and spheres

  • Kenneth L. Clarkson1,
  • Herbert Edelsbrunner2,
  • Leonidas J. Guibas3,4,
  • Micha Sharir5,6 &
  • …
  • Emo Welzl7 

Discrete & Computational Geometry volume 5, pages 99–160 (1990)Cite this article

  • 1000 Accesses

  • 188 Citations

  • 9 Altmetric

  • Metrics details

Abstract

We present upper and lower bounds for extremal problems defined for arrangements of lines, circles, spheres, and alike. For example, we prove that the maximum number of edges boundingm cells in an arrangement ofn lines is Θ(m 2/3 n 2/3 +n), and that it isO(m 2/3 n 2/3 β(n) +n) forn unit-circles, whereβ(n) (and laterβ(m, n)) is a function that depends on the inverse of Ackermann's function and grows extremely slowly. If we replace unit-circles by circles of arbitrary radii the upper bound goes up toO(m 3/5 n 4/5 β(n) +n). The same bounds (without theβ(n)-terms) hold for the maximum sum of degrees ofm vertices. In the case of vertex degrees in arrangements of lines and of unit-circles our bounds match previous results, but our proofs are considerably simpler than the previous ones. The maximum sum of degrees ofm vertices in an arrangement ofn spheres in three dimensions isO(m 4/7 n 9/7 β(m, n) +n 2), in general, andO(m 3/4 n 3/4 β(m, n) +n) if no three spheres intersect in a common circle. The latter bound implies that the maximum number of unit-distances amongm points in three dimensions isO(m 3/2 β(m)) which improves the best previous upper bound on this problem. Applications of our results to other distance problems are also given.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences.J. Combin. Theory Ser. A, to appear.

  2. D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition: I. The basic algorithm.SIAM J. Comput. 13 (1984), 865–877.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Aronov and M. Sharir. Triangles in space or building (and analyzing) castles in the air. InProc 4th Ann. Sympos. Comput. Geom., 1988, pp. 381–391.

  4. D. Avis, P. Erdös, and J. Pach. Repeated distances in space.Graphs Combin. 4 (1988), 207–217.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Beck. On the lattice property of the plane and some problems of Dirac, Motzkin and Erdös in combinatorial geometry.Combinatorica 3 (1983). 281–297.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. J. Canham. A theorem on arrangements of lines in the plane.Israel J. Math. 7 (1969), 393–397.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry. InProc. 29th IEEE Sympos. Found Comput. Sci., 1988, pp. 539–549.

  8. B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality.BIT 25 (1985), 76–90.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Chazelle and L. Palios. Triangulating a non-convex polytope. InProc. 5th Ann. Sympos. Comput. Geom., 1989, pp. 393–400.

  10. F. R. K. Chung. Sphere-and-point incidence relations in high dimensions with applications to unit distances and furthest-neighbor pairs.Discrete Comput. Geom. 4 (1988), 183–190.

    Article  Google Scholar 

  11. K. L. Clarkson. New applications of random sampling in computational geometry.Discrete Comput. Geom. 2 (1987), 195–222.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.Discrete Comput. Geom. 4 (1989), 387–421.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompositions. InProceedings of the 2nd GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Science, Vol.35. Springer-Verlag, Berlin, 1975, pp. 134–183.

    Google Scholar 

  14. D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. InProc. 3rd Ann. Sympos. Comput. Geom., 1987, pp. 86–99.

  15. H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.

    Book  MATH  Google Scholar 

  16. H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement.J. Comput. System Sci. 38 (1989), 165–194.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Edelsbrunner, L. J. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl. Implicitly representing arrangements of lines or segments.Discrete Comput. Geom. 4 (1989), 433–466.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Edelsbrunner, L. J. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements of curves in the plane—topology, combinatorics, and algorithms.Theoret. Comput. Sci., to appear.

  19. H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity of many cells in arrangements of planes and related problems.Discrete Comput. Geom., this issue, 197–216.

  20. H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity and construction of many faces in arrangements of lines and of segments.Discrete Comput. Geom., this issue, 161–196.

  21. H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications.SIAM J. Comput. 15 (1986), 341–363.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Edelsbrunner and S. S. Skiena. On the number of furthest neighbour pairs in a points set.Amer. Math. Monthly,96 (1989), 614–618.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Edelsbrunner and E. Welzl. On the maximal number of edges of many faces in arrangements.J. Combin. Theory Ser. A 41 (1986), 159–166.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Erdős. On sets of distances ofn points.Amer. Math. Monthly 53 (1946), 248–250.

    Article  MathSciNet  Google Scholar 

  25. P. Erdős. On sets of distances ofn points in Euclidean space.Magyar Tud. Akad. Mat. Kutaló Int. Kozl. 5 (1960), 165–169.

    Google Scholar 

  26. P. Erdős. On extremal problems of graphs and generalized graphs.Israel J. Math. 2 (1964), 183–190.

    Article  MathSciNet  Google Scholar 

  27. P. Erdős. On some problems of elementary and combinatorial geometry.Ann. Mat. Pura Appl. (IV) 103 (1975), 99–108.

    Article  Google Scholar 

  28. P. Erdős. Extremal problems in number theory, combinatorics and geometry. InProc. ICM, 1983.

  29. P. Erdős, D. Hickerson, and J. Pach. A problem of Leo Moser about repeated distances on the sphere.Amer. Math. Monthly, to appear.

  30. W. Feller.An Introduction to Probability Theory and Its Applications, Vol. II, Second edition. Wiley, New York, 1971.

    MATH  Google Scholar 

  31. S. J. Fortune. A sweepline algorithm for Voronoi diagrams.Algorithmica 2 (1987), 153–174.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. E. Goodman and R. Pollack. Proof of Grünbaum's conjecture of the stretchability of certain arrangements of pseudolines.J. Combin. Theory Ser. A 29 (1980), 385–390.

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Grünbaum. A proof of Vázsonyi's conjecture.Bull. Res. Council Israel Sect. A 6 (1956), 77–78.

    MathSciNet  Google Scholar 

  34. B. Grünbaum.Convex Polytopes. Wiley, Chichester, 1967.

    MATH  Google Scholar 

  35. L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams.ACM Trans. Graphics 4 (1985), 74–123.

    Article  MATH  Google Scholar 

  36. G. H. Hardy, J. E. Littlewood and G. Pólya.Inequalities, Second edition. Cambridge, 1952.

  37. S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica 6 (1986), 151–177.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Haussler and E. Welzl.ɛ-nets and simplex range queries.Discrete Comput. Geom. 2 (1987), 127–151.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Heppes. Beweis einer Vermutung von A. Vázsonyi.Acta Math. Acad. Sci. Hungar. 7 (1956), 463–466.

    Article  MathSciNet  Google Scholar 

  40. S. Józsa and E. Szemerédi. The number of unit distances in the plane: Infinite and finite sets.Colloq. Math. Soc. János Bolyai 10 (1975), 939–950.

    Google Scholar 

  41. K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles.Discrete Comput. Geom. 1 (1986), 59–71.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. E. Knuth.Fundamental Algorithms: The Art of Computer Programming I. Addison-Wesley, Reading, Mass., 1968.

    MATH  Google Scholar 

  43. D. E. Knuth.Seminumerical Algorithms: The Art of Computer Programming II. Addison-Wesley, Reading, Mass., 1969.

    Google Scholar 

  44. D. E. Knuth.Sorting and Searching: The Art of Computer Programming III. Addison-Wesley, Reading, Mass., 1973.

    Google Scholar 

  45. T. Kövári, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz.Colloq. Math. 3 (1954), 50–57.

    MATH  Google Scholar 

  46. F. Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 78 (1926), 256–267.

    Google Scholar 

  47. M. Mäntylä.An Introduction to Solid Modeling. Computer Science Press, Rockville, Md., 1988.

    Google Scholar 

  48. J. Matoušek. Construction ofɛ-nets. InProc. 5th Ann, Sympos. Comput. Geom., 1989, pp. 1–10.

  49. W. O. J. Moser and J. Pach.Research Problems in Discrete Geometry. Academic Press, New York, to appear.

  50. F. P. Preparata and M. I. Shamos.Computational Geometry—an Introduction. Springer-Verlag, New York, 1985.

    Google Scholar 

  51. G. Purdy and P. Erdos. Some extremel problems in combinatorial geometry. Manuscript, 1987.

  52. I. Reiman. Über ein Problem von K. Zarankiewicz.Acta Math. Hungar. Acad. Sci. 9 (1958), 269–273.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. T. Schwartz and M. Sharir. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds.Adv. in Appl. Math. 4 (1983), 298–351.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Sharir. Davenport-Schinzel sequences and their geometric applications. InTheoretical Foundations of Computer Graphics and CAD, R. A. Earnshaw (ed.), NATO ASI Series, Vol. F-40, Springer-Verlag, Berlin, 1988, pp. 253–278.

    Chapter  Google Scholar 

  55. J. Spencer, E. Szemerédi, and W. T. Trotter, Jr. Unit distances in the Euclidean plane. InGraph Theory and Combinatorics, Academic Press, London, 1984, pp. 293–303.

    Google Scholar 

  56. S. Straszewicz. Sur un problème geometrique de P. Erdős.Bull. Acad. Polon. Sci. Cl. III 5 (1957), 39–40.

    MathSciNet  MATH  Google Scholar 

  57. E. Szemerédi and W. T. Trotter, Jr. Extremal problems in discrete geometry.Combinatorica 3 (1983), 381–392.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. AT&T Bell Laboratories, 07974, Murray Hill, NJ, USA

    Kenneth L. Clarkson

  2. Department of Computer Science, University of Illinois at Urbana-Champaign, 61801, Urbana, Ill, USA

    Herbert Edelsbrunner

  3. DEC Systems Research Center, 94301, Palo Alto, Cal, USA

    Leonidas J. Guibas

  4. Computer Science Department, Stanford University, 94305, Cal, USA

    Leonidas J. Guibas

  5. Courant Institute of Mathematical Sciences, New York University, 10012, New York, NY, USA

    Micha Sharir

  6. School of Mathematical Sciences, Tel Aviv University, 69978, Tel Aviv, Israel

    Micha Sharir

  7. Fachbereich Mathematik, Freie Universität Berlin, 1000, Berlin 33, Germany

    Emo Welzl

Authors
  1. Kenneth L. Clarkson
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Herbert Edelsbrunner
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Leonidas J. Guibas
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Micha Sharir
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Emo Welzl
    View author publications

    You can also search for this author in PubMed Google Scholar

Additional information

The research of the second author was supported by the National Science Foundation under Grant CCR-8714565. Work by the fourth author has been supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grant No. NSF-DCR-83-20085, by grants from the Digital Equipment Corporation and the IBM Corporation, and by a research grant from the NCRD, the Israeli National Council for Research and Development. A preliminary version of this paper has appeared in theProceedings of the 29th IEEE Symposium on Foundations of Computer Science, 1988.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clarkson, K.L., Edelsbrunner, H., Guibas, L.J. et al. Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput Geom 5, 99–160 (1990). https://doi.org/10.1007/BF02187783

Download citation

  • Received: 21 November 1988

  • Revised: 13 September 1989

  • Published: 01 March 1990

  • Issue Date: March 1990

  • DOI: https://doi.org/10.1007/BF02187783

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Voronoi Diagram
  • Vertical Side
  • Line Arrangement
  • Sample Arrangement
  • Sample Sphere
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.92.114

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.