Abstract
We present upper and lower bounds for extremal problems defined for arrangements of lines, circles, spheres, and alike. For example, we prove that the maximum number of edges boundingm cells in an arrangement ofn lines is Θ(m 2/3 n 2/3 +n), and that it isO(m 2/3 n 2/3 β(n) +n) forn unit-circles, whereβ(n) (and laterβ(m, n)) is a function that depends on the inverse of Ackermann's function and grows extremely slowly. If we replace unit-circles by circles of arbitrary radii the upper bound goes up toO(m 3/5 n 4/5 β(n) +n). The same bounds (without theβ(n)-terms) hold for the maximum sum of degrees ofm vertices. In the case of vertex degrees in arrangements of lines and of unit-circles our bounds match previous results, but our proofs are considerably simpler than the previous ones. The maximum sum of degrees ofm vertices in an arrangement ofn spheres in three dimensions isO(m 4/7 n 9/7 β(m, n) +n 2), in general, andO(m 3/4 n 3/4 β(m, n) +n) if no three spheres intersect in a common circle. The latter bound implies that the maximum number of unit-distances amongm points in three dimensions isO(m 3/2 β(m)) which improves the best previous upper bound on this problem. Applications of our results to other distance problems are also given.
References
P. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences.J. Combin. Theory Ser. A, to appear.
D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition: I. The basic algorithm.SIAM J. Comput. 13 (1984), 865–877.
B. Aronov and M. Sharir. Triangles in space or building (and analyzing) castles in the air. InProc 4th Ann. Sympos. Comput. Geom., 1988, pp. 381–391.
D. Avis, P. Erdös, and J. Pach. Repeated distances in space.Graphs Combin. 4 (1988), 207–217.
J. Beck. On the lattice property of the plane and some problems of Dirac, Motzkin and Erdös in combinatorial geometry.Combinatorica 3 (1983). 281–297.
R. J. Canham. A theorem on arrangements of lines in the plane.Israel J. Math. 7 (1969), 393–397.
B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry. InProc. 29th IEEE Sympos. Found Comput. Sci., 1988, pp. 539–549.
B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality.BIT 25 (1985), 76–90.
B. Chazelle and L. Palios. Triangulating a non-convex polytope. InProc. 5th Ann. Sympos. Comput. Geom., 1989, pp. 393–400.
F. R. K. Chung. Sphere-and-point incidence relations in high dimensions with applications to unit distances and furthest-neighbor pairs.Discrete Comput. Geom. 4 (1988), 183–190.
K. L. Clarkson. New applications of random sampling in computational geometry.Discrete Comput. Geom. 2 (1987), 195–222.
K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.Discrete Comput. Geom. 4 (1989), 387–421.
G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompositions. InProceedings of the 2nd GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Science, Vol.35. Springer-Verlag, Berlin, 1975, pp. 134–183.
D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. InProc. 3rd Ann. Sympos. Comput. Geom., 1987, pp. 86–99.
H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.
H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement.J. Comput. System Sci. 38 (1989), 165–194.
H. Edelsbrunner, L. J. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl. Implicitly representing arrangements of lines or segments.Discrete Comput. Geom. 4 (1989), 433–466.
H. Edelsbrunner, L. J. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements of curves in the plane—topology, combinatorics, and algorithms.Theoret. Comput. Sci., to appear.
H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity of many cells in arrangements of planes and related problems.Discrete Comput. Geom., this issue, 197–216.
H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity and construction of many faces in arrangements of lines and of segments.Discrete Comput. Geom., this issue, 161–196.
H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications.SIAM J. Comput. 15 (1986), 341–363.
H. Edelsbrunner and S. S. Skiena. On the number of furthest neighbour pairs in a points set.Amer. Math. Monthly,96 (1989), 614–618.
H. Edelsbrunner and E. Welzl. On the maximal number of edges of many faces in arrangements.J. Combin. Theory Ser. A 41 (1986), 159–166.
P. Erdős. On sets of distances ofn points.Amer. Math. Monthly 53 (1946), 248–250.
P. Erdős. On sets of distances ofn points in Euclidean space.Magyar Tud. Akad. Mat. Kutaló Int. Kozl. 5 (1960), 165–169.
P. Erdős. On extremal problems of graphs and generalized graphs.Israel J. Math. 2 (1964), 183–190.
P. Erdős. On some problems of elementary and combinatorial geometry.Ann. Mat. Pura Appl. (IV) 103 (1975), 99–108.
P. Erdős. Extremal problems in number theory, combinatorics and geometry. InProc. ICM, 1983.
P. Erdős, D. Hickerson, and J. Pach. A problem of Leo Moser about repeated distances on the sphere.Amer. Math. Monthly, to appear.
W. Feller.An Introduction to Probability Theory and Its Applications, Vol. II, Second edition. Wiley, New York, 1971.
S. J. Fortune. A sweepline algorithm for Voronoi diagrams.Algorithmica 2 (1987), 153–174.
J. E. Goodman and R. Pollack. Proof of Grünbaum's conjecture of the stretchability of certain arrangements of pseudolines.J. Combin. Theory Ser. A 29 (1980), 385–390.
B. Grünbaum. A proof of Vázsonyi's conjecture.Bull. Res. Council Israel Sect. A 6 (1956), 77–78.
B. Grünbaum.Convex Polytopes. Wiley, Chichester, 1967.
L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams.ACM Trans. Graphics 4 (1985), 74–123.
G. H. Hardy, J. E. Littlewood and G. Pólya.Inequalities, Second edition. Cambridge, 1952.
S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica 6 (1986), 151–177.
D. Haussler and E. Welzl.ɛ-nets and simplex range queries.Discrete Comput. Geom. 2 (1987), 127–151.
A. Heppes. Beweis einer Vermutung von A. Vázsonyi.Acta Math. Acad. Sci. Hungar. 7 (1956), 463–466.
S. Józsa and E. Szemerédi. The number of unit distances in the plane: Infinite and finite sets.Colloq. Math. Soc. János Bolyai 10 (1975), 939–950.
K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles.Discrete Comput. Geom. 1 (1986), 59–71.
D. E. Knuth.Fundamental Algorithms: The Art of Computer Programming I. Addison-Wesley, Reading, Mass., 1968.
D. E. Knuth.Seminumerical Algorithms: The Art of Computer Programming II. Addison-Wesley, Reading, Mass., 1969.
D. E. Knuth.Sorting and Searching: The Art of Computer Programming III. Addison-Wesley, Reading, Mass., 1973.
T. Kövári, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz.Colloq. Math. 3 (1954), 50–57.
F. Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 78 (1926), 256–267.
M. Mäntylä.An Introduction to Solid Modeling. Computer Science Press, Rockville, Md., 1988.
J. Matoušek. Construction ofɛ-nets. InProc. 5th Ann, Sympos. Comput. Geom., 1989, pp. 1–10.
W. O. J. Moser and J. Pach.Research Problems in Discrete Geometry. Academic Press, New York, to appear.
F. P. Preparata and M. I. Shamos.Computational Geometry—an Introduction. Springer-Verlag, New York, 1985.
G. Purdy and P. Erdos. Some extremel problems in combinatorial geometry. Manuscript, 1987.
I. Reiman. Über ein Problem von K. Zarankiewicz.Acta Math. Hungar. Acad. Sci. 9 (1958), 269–273.
J. T. Schwartz and M. Sharir. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds.Adv. in Appl. Math. 4 (1983), 298–351.
M. Sharir. Davenport-Schinzel sequences and their geometric applications. InTheoretical Foundations of Computer Graphics and CAD, R. A. Earnshaw (ed.), NATO ASI Series, Vol. F-40, Springer-Verlag, Berlin, 1988, pp. 253–278.
J. Spencer, E. Szemerédi, and W. T. Trotter, Jr. Unit distances in the Euclidean plane. InGraph Theory and Combinatorics, Academic Press, London, 1984, pp. 293–303.
S. Straszewicz. Sur un problème geometrique de P. Erdős.Bull. Acad. Polon. Sci. Cl. III 5 (1957), 39–40.
E. Szemerédi and W. T. Trotter, Jr. Extremal problems in discrete geometry.Combinatorica 3 (1983), 381–392.
Author information
Authors and Affiliations
Additional information
The research of the second author was supported by the National Science Foundation under Grant CCR-8714565. Work by the fourth author has been supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grant No. NSF-DCR-83-20085, by grants from the Digital Equipment Corporation and the IBM Corporation, and by a research grant from the NCRD, the Israeli National Council for Research and Development. A preliminary version of this paper has appeared in theProceedings of the 29th IEEE Symposium on Foundations of Computer Science, 1988.
Rights and permissions
About this article
Cite this article
Clarkson, K.L., Edelsbrunner, H., Guibas, L.J. et al. Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput Geom 5, 99–160 (1990). https://doi.org/10.1007/BF02187783
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02187783
Keywords
- Voronoi Diagram
- Vertical Side
- Line Arrangement
- Sample Arrangement
- Sample Sphere