Aronov, B. and Sharir, M., Triangles in space, or: Building (and analyzing) castles in the air,Proc. 4th Ann. ACM Sympos. Comput. Geom., 1988, pp. 381–391.
Avis, D. and Doskas, M., Algorithms for high dimensional stabbing problems, Report SOCS-87.2, School of Computer Science, McGill University, Montreal, Quebec, 1987.
Google Scholar
Chazelle, B., Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm,SIAM J. Comput.
13 (1984), 488–507.
MathSciNet
Article
MATH
Google Scholar
Defays, D., An efficient algorithm for a complete link method,Comput. J.
20 (1977), 364–366.
MathSciNet
Article
MATH
Google Scholar
Devai, F., Quadratic bounds for hidden line elimination,Proc. 2nd Ann. ACM Sympos. Comput. Geom., 1986, pp. 269–275.
Edelsbrunner, H.,Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
Book
MATH
Google Scholar
Edelsbrunner, H., The upper envelope of piecewise linear functions: tight bounds on the number of faces, Report UIUCDCS-R-87-1396, Department of Computer Science, University of Illinois, 1987.
Edelsbrunner, H., Maurer, H. A., Preparata, F. P., Rosenberg, A. L., Welzl, E., and Wood, D., Stabbing line segments,BIT
22 (1982), 274–281.
MathSciNet
Article
MATH
Google Scholar
Edelsbrunner, H. and Mücke, E. P., Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms,Proc. 4th Ann. ACM Sympos. Comput. Geom., 1988, pp. 118–133.
Guibas, L. J., Ramshaw, L., and Stolfi, J., A kinematic framework for computational geometry,Proc. 24th Ann. IEEE Sympos. Found. Comput. Sci., 1983, pp. 100–111.
Guibas, L. J. and Seidel, R., Computing convolutions by reciprocal search,Discrete Comput. Geom.
2 (1987), 175–193.
MathSciNet
Article
MATH
Google Scholar
Guibas, L. J., Sharir, M., and Sifrony, S., On the general motion planning problem with two degrees of freedom,Proc. 4th Ann. ACM Sympos. Comput. Geom., 1988, pp. 289–298.
Hart, S. and Sharir, M., Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes,Combinatorica
6 (1986), 151–177.
MathSciNet
Article
MATH
Google Scholar
Hartigan, J. A.,Clustering Algorithms, Wiley, New York, 1975.
MATH
Google Scholar
Hopcroft, J., Schwartz, J., and Sharir, M. (eds.),Planning, Geometry and Complexity of Robot Motion, Ablex, Norwood, NJ, 1987.
Google Scholar
Kedem, K., Livne, R., Pach, J., and Sharir, M., On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles,Discrete Comput. Geom.
1 (1986), 59–71.
MathSciNet
Article
MATH
Google Scholar
Leven, D. and Sharir, M., Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams,Discrete Comput. Geom.
2 (1987), 9–31.
MathSciNet
Article
MATH
Google Scholar
Lozano-Pérez, T. and Wesley, M. A., An algorithm for planning collision-free paths among polyhedral obstacles,Comm. ACM
22 (1979), 560–570.
Article
Google Scholar
McKenna, M., Worst-case optimal hidden-surface removal,ACM Trans. Graphics
6 (1987), 19–28.
Article
Google Scholar
Pach, J. and Sharir, M., The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: combinatorial analysis,Discrete Comput. Geom., to appear.
Pollack, R., Sharir, M., and Sifrony, S., Separating two simple polygons by a sequence of translations,Discrete Comput. Geom.
3 (1988), 123–136.
MathSciNet
Article
MATH
Google Scholar
Preparata, F. P. and Shamos, M. I.,Computational Geometry—An Introduction, Springer-Verlag, New York, 1985.
Google Scholar
Schwartz, J. T. and Sharir, M., On the two-dimensional Davenport-Schinzel problem, Report 193 (revised), Computer Science Department, Courant Institute, New York, 1987.
Google Scholar
Shor, P., Private communication.
Sutherland, I. E., Sproull, R. F. and Shumacker, R. A., A characterization of ten hidden surface algorithms,Comput. Surveys
6 (1974), 1–55.
Article
MATH
Google Scholar
Tamir, A., Improved complexity bounds for center location problems on networks by using dynamic data structures, Manuscript.
Tarjan, R. E., Depth-first search and linear graph algorithms,SIAM J. Comput.
2 (1972), 146–160.
MathSciNet
Article
Google Scholar
Toussaint, G., Movable separability of sets, inComputational Geometry, G. T. Toussaint, ed., North-Holland, Amsterdam, 1985, pp. 335–375.
Google Scholar
Wiernik, A. and Sharir, M., Planar realization of nonlinear Davenport-Schinzel sequences by segments,Discrete Comput. Geom.
3 (1988), 15–47.
MathSciNet
Article
MATH
Google Scholar