Skip to main content
Log in

Molecular ecology ofFrankia: Advantages and disadvantages of the use of DNA probes

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Ecological studies on the actinomyceteFrankia are often influenced by the difficulty to isolate and identify this microorganism. The application of molecular biological techniques offers possibilities to detect microbes without isolation and cultivation.Nif genes or whole plasmids can serve as targets for the design of specific probes. Alternatively, ribosomal RNA (rRNA), commonly used in modern phylogenetic studies, can be used as a target molecule in ecological studies. This paper gives an overview of new developments on the use of 16S rRNA as a target molecule for oligonucleotide probes. Group-specific sequences in the 16S rRNA ofFrankia can be used as targets for oligonucleotide probes that a) recognize ineffectiveFrankia strains onAlnus, b) recognize effective strains onAlnus, c) recognize allFrankia strains tested so far. The present paper summarizes the essential steps needed for the use of these probes for the detection ofFrankia strains in soil without isolation and cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann R I, Krumholz I, and Stahl D A 1990 Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in mierobiology. J. Bacteriol. 172, 762–770.

    PubMed  Google Scholar 

  • An C S, Riggsby W S, and Mullin B C 1985 Relationship ofFrankia isolates based on deoxyribonucleic acid homology studies. Int. J. System. Bacteriol. 35, 140–146.

    Google Scholar 

  • An C S, Riggsby W S and Mullin B C 1987 DNA relatedness ofFrankia isolates ArI4 and EuI1 to other actinomycetes of cell wall type III. The Actinomycetes 20, 50–54.

    Google Scholar 

  • Baker D, Kidd G H and Torrey J G 1979a Separation of actinomycete nodule endophytes from crushed nodule suspensions by Sephadex fractionation. Bot. Gaz. 140 (Suppl.), S49-S51.

    Google Scholar 

  • Baker D, Torrey J G and Kidd G H 1979b Isolation by sucrose-density fractionation and cultivation in vitro of actinomycetes from nitrogen-fixing root nodules. Nature 281, 76–78.

    PubMed  Google Scholar 

  • Baker D 1987 Relationship among pure cultured strains ofFrankia based on host specificity. Physiol. Plant. 70, 245–248.

    Google Scholar 

  • Baker D and O'Keefe D 1984 A modified sucrose fractionation procedure for the isolation of frankiae from actinorhizal root nodules and soil samples. Plant and Soil 78, 23–28.

    Google Scholar 

  • Becking J H 1970 Frankiaceae Fan. nov. (Actinomycetales) with one new combination and six new species of the genusFrankia Brunchorst 1886 174. Int. J. Syst. Bacteriol. 20, 201–220.

    Google Scholar 

  • Becking J H 1974 The Family Frankiaceae.In Bergey's Mannual of Determinative Bacteriology. Eds. R EBuchanan and N EGibbons. pp. 701–706. Williams and Wilkins Co., Baltimore, MD.

    Google Scholar 

  • Berry A and Torrey J G 1979 Isolation and characterization in vivo and in vitro of an actinomycetous endophyte fromAlnus rubra Bong.In Symbiotic Nitrogen Fixation in the Management of Temperate Forests. Eds. J C Gordon, C T Wheeler and D A Perry. pp 69–83. Oregon University Press.

  • Callaham D, Del Tredici P and Torrey J G 1978 Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199, 899–902.

    Google Scholar 

  • De Long E F, Wickham G S and Pace N R 1989 Phylogenetic strains: ribosomal RNA-based probes for the identification of single cells. Science 243, 1360–1363.

    PubMed  Google Scholar 

  • Dorbitsa S V 1985 Restriction analysis of theFrankia spp. genome. FEMS Microbiol. Lett. 29, 123–128.

    Google Scholar 

  • Embley T M, Smida J and Stackerbrandt E 1988 Reverse transcriptase sequencing of 16S ribosomal RNA fromFaenia rectivirgula, Pseudonocardia thermophila andSaccharopolyspora hirsuia, three Wall type IV actinomycetes which lack mycolic acids. J. Gen. Microbiol. 134, 961–966.

    PubMed  Google Scholar 

  • Fernandez M P, Meugnier H, Grimont P A D and Bardin R 1989 Deoxyribonucleic acid relatedness in the genusFrankia. Int. J. System. Bacteriol. 39, 424–429.

    Google Scholar 

  • Fuhrman J A, Comeau D E, Hagstrom A and Chan A M 1988 Extraction from natural planctonic microorganisms of DNA suitable for molecular biological studies. Appl. Environ. Microbiol. 54, 1426–1429.

    Google Scholar 

  • Giovannoni S J, De Long E F, Olsen G J and Pace N R 1988 Phylogenetic Group-specific oligonucleotide probes for identification of single microbial cells. J. Bacteriol. 170, 720–726.

    PubMed  Google Scholar 

  • Goebel U B, Geiser A and Stanbridge E J 1987 Oligonucleotide probes complementary to variable regions of ribosomal RNA discriminate betweenMycoplasma species. J. Gen. Microbiol. 133, 1969–1974.

    PubMed  Google Scholar 

  • Hahn D 1990 16S rRNA as molecular marker in ecology ofFrankia. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Hahn D, Starrenburg M J C and Akkermans A D L 1988 Variable compatibility of clonedAlnus glutinosa ecotypes against ineffectiveFrankia strains. Plant and Soil 107, 233–243.

    Google Scholar 

  • Hahn D, Dorsch M, Starrenburg M J C and Akkermans A D L 1989a Synthetic oligonucleotide probes for identification ofFrankia strains. Plant and Soil 118, 210–219.

    Google Scholar 

  • Hahn D, Kester R, Starrenburg M J C and Akkermans A D L 1990a Extraction of ribosomal RNA from soil for detection ofFrankia with oligonucleotide probes. Arch. Microbiol. 154, 329–335.

    PubMed  Google Scholar 

  • Hahn D, Lechevalier M P, Fischer A and Stackebrandt E 1989b Evidence for a close phylogenetic relationship between members of the generaFrankia, Geodermatophilus, andBlastococcus and emendation of the family Frankiaceae. Syst. Appl. Microbiol. 11, 236–242.

    Google Scholar 

  • Hahn D, Starrenburg M J C and Akkermans A D L 1990b Oligonucleotide probes that hybridize with rRNA as a tool to studyFrankia strains in root nodules. Appl. Environ. Microbiol. 56, 1342–1346.

    Google Scholar 

  • Henneke H, Kaluza K, Thony B, Fuhrmann M, Ludwig W and Stackebrandt E 1985 Concurrent evolution of nitrogenase genes and 16S rRNA inRhizobium species and other nitrogen fixing bacteria. Arch. Microbiol. 142, 342–348.

    Google Scholar 

  • Holben W E, Jansson J K, Chelm B K and Tiedje J M 1988 DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54, 703–711.

    Google Scholar 

  • Kohne D, Hogan J, Jonas V, Dean E and Adams T H 1986 Novel approach for rapid and sensitive detection of microorganisms: DNA probes to rRNA.In Microbiology-1986. Ed. LLeive. pp. 110–12, American Society for Microbiology, Washington DC.

    Google Scholar 

  • Lane D J, Pace B, Olsen G J, Stahl D A, Sogin M L and Pace N R 1985 Rapid determination of 16S rRNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82, 6955–6959.

    PubMed  Google Scholar 

  • Lechevalier M P 1984 The taxonomy of the genusFrankia.In Frankia Symbiosis and Actinorhizal Plants. Eds. A D LAkkermans, DBaker, KHuss-Danell and J DTjepkema. pp. 1–6. Nijhoff/Junk Publishers, The Hague.

    Google Scholar 

  • Lechevalier M P and Lechevalier H A 1984 Taxonomy ofFrankia In Biological, Biochemical and Biomedical Aspects of Actinomycetes. Eds LOrttiz-Ortiz, L FBojalil and VYakoleff. Academic Press, New York. pp 575–582.

    Google Scholar 

  • Meesters T M 1988 The function of vesicles in the actinomyceteFrankia. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Normand P and Lalongde M 1986 The genetics of actinorhizalFrankia: A review. Plant and Soil 90, 429–453.

    Google Scholar 

  • Normand P, Simonet P and Bardin R 1988 Conservation of Nif sequences inFrankia. Mol. Gen. Genet. 213, 238–246.

    PubMed  Google Scholar 

  • Ogram A, Sayler G S and Barkay T 1988 DNA extraction and purification from sediments. J. Microbiol. Methods 7, 57–66.

    Google Scholar 

  • Ruvkun G B and Ausubel F M 1980 Interspecies homology of nitrogenase genes. Proc. Natl. Acad. Sci. USA 77, 191–195.

    PubMed  Google Scholar 

  • Saiki R K, Gelfand D H, Stoffel S, Scharf S J, Higuchi R, Horn G T, Mullis K B and Erlich H A 1988 Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    PubMed  Google Scholar 

  • Simonet P, Le N T, Teissierdu Cros E and Bardin R 1988 Identification ofFrankia strains by direct DNA hybridization of crushed nodules. Appl. Environ. Microbiol. 54, 2500–2503.

    Google Scholar 

  • Sommerville C C, Knight I T, Straube W L and Colwell R R 1989 Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl. Environ. Microbiol. 55, 548–554.

    PubMed  Google Scholar 

  • Smolander A 1990Frankia populations in soils under different tree species-with special emphasis on soils underBetula pendula. Plant and Soil 121, 1–10.

    Google Scholar 

  • Stahl D, Flesher B, Mansfield R H and Montgomery L 1988 Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 1079–1084.

    PubMed  Google Scholar 

  • Steffan R J and Atlas R M 1988 DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol. 54, 2185–2191.

    PubMed  Google Scholar 

  • Steffan R J, Goksoyr J, Bej A K and Atlas R M 1988 Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54, 2908–2915.

    PubMed  Google Scholar 

  • Tenover F C 1988 Diagnostic deoxyribonucleic acid probes for infectious diseases. Clin. Microbiol. Rev. 1, 82–101.

    PubMed  Google Scholar 

  • Van Dijk C 1984 Ecological aspects of spore formation in theFrankia-Alnus symbiosis. Ph.D. Thesis, Univ. Leiden, The Netherlands

    Google Scholar 

  • Van Dijk C and Sluimer-Stolk A 1990 An ineffective strain type ofFrankia in the soil of natural stands of Alnus glutinosa (L.) Gaertn. Plant and Soil 127, 107–121.

    Google Scholar 

  • Viscidi R P and Yolken R G 1987 Molecular diagnosis of infectious diseases by nucleic acid hybridization. Molecular Cellular Probes 1, 3–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkermans, A.D.L., Hahn, D. & Mirza, M.S. Molecular ecology ofFrankia: Advantages and disadvantages of the use of DNA probes. Plant Soil 137, 49–54 (1991). https://doi.org/10.1007/BF02187431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02187431

Kew words

Navigation