Skip to main content
Log in

Comments on the psychrometric determination of leaf water potentialsin situ

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Leaf diffusion resistances may lower the values of leaf water potentials found byin situ measurements with silver-foil psychrometers. With the instrumentation used, the bias ranges from zero to increasing negative deviations as leaf diffusion resistances become larger than 3.5 cm-1 sec.

Water potentials determined with the dewpoint technique are unaffected by diffusion resistances.In situ measurements by this method may also be carried out with the silver-foil sensor.

Hence, one and the same sensor may serve to trace both leaf water potentials and leaf diffusion resistance through dewpoint and psychrometric measurements. re]19760720

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrs, H. D. and Kramer, P. J., Water potential increase in sliced leaf tissue as a cause of error in vapor phase determinations of water potential. Plant Physiol. 44, 959–964 (1969).

    Google Scholar 

  2. Boyer, J. S. and Knipling, E. B., Isopiestic technique for measuring leaf water potentials with a thermocouple psychrometer. Proc. Nat. Acad. Sci. U.S.A. 54, 1044–1051 (1965).

    Google Scholar 

  3. Campbell, E. C., Campbell, G. S. and Barlow, W. K., A dewpoint hygrometer for water potential measurement, Agric. Meteorol. 12, 113–121 (1973).

    Google Scholar 

  4. Ehlig, C. F., Measurement of energy status of water in plants with a thermocouple psychrometer. Plant Physiol. 37, 288–290 (1962).

    Google Scholar 

  5. Forsythe, W. E., Smithsonian physical tables. Smithson. Misc. Collect.120 Smithson, Inst., Washington D.C.

  6. Hoffman, G. J. and Rawlins, S. L., Silver-foil psychrometer for measuring leaf water potentialin situ. Science 177, 862–804 (1972).

    Google Scholar 

  7. Hoffman, G. J. and Splinter, W. E., Water potential measurements of an intact plant-soil system. Agron. J. 60, 408–413 (1968).

    Google Scholar 

  8. Kanemasu, E. T., Thurtell, G. W. and Tanner, C. B., Design, calibration and field use of a stomatal diffusion porometer. Plant Physiol. 44, 881–885 (1969).

    Google Scholar 

  9. Lang, A. R. G., Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40°C. Aust. J. Chem. 20, 2017–2023 (1967).

    Google Scholar 

  10. Manohar, M. S., Which water potential? Differences between isopiestic thermocouple measurements of intact and excised plant materials. Biol. Plant. 13, 247–256 (1971).

    Google Scholar 

  11. Milthorpe, F. L. and Moorby, J., An introduction to crop physiology. Cambridge University Press (1974).

  12. Neumann, H. H. and Thurtell, G. W., A Peltier cooled thermocouple dewpoint hygrometer for in-situ measurement of water potentials.In Brown, R. W. and van Haveren, B. P., eds. Psychrometry in water research. Proc. Symp. on Thermocouple Psychrometers. 1971. Utah Agric. Exp. Stn. (1972).

  13. Nobel, P. S., Introduction to biophysical plant physiology. Freeman, San Francisco (1973).

    Google Scholar 

  14. Peck, A. J., Theory of the Spanner psychrometer. 1. The thermocouple. Agric. Meteorol. 5, 433–447 (1968).

    Google Scholar 

  15. Peck, A. J., Theory of the Spanner psychrometer. 2. Sample effects and equilibration. Agric. Meteorol. 6, 111–124 (1969).

    Google Scholar 

  16. Penman, H. L. and Scofield, R. K., Some physical aspects of assimilation and transpiration. Symp. Soc. Exp. Biol. V, 115–129 (1951).

    Google Scholar 

  17. Rawlins, S. L., Systematic error in leaf water potential measurements with a thermocouple phsychrometer. Science 146, 644–646 (1964).

    Google Scholar 

  18. Richards, L. A. and Ogata, G., Thermocouple for vapor pressure measurements in biological and soil systems at high humidity. Science 128, 1089–1090 (1958).

    Google Scholar 

  19. Spanner, D. C., The Peltier effect and its use in the measurement of suction pressure. J. Exp. Bot. 2, 145–148 (1951).

    Google Scholar 

  20. Stigter, C. J., Leaf diffusion resistance to water vapour and its direct measurement. I. Introduction and review concerning relevant factors and methods. Meded. Landbouwhogesch.72–3 (1972).

  21. Stigter, C. J., Leaf diffusion resistance to water vapour and its direct measurement. II. Design, calibration and pertinent theory of an improved diffusion resistance meter. Meded. Landbouwhogesch.73–15 (1973).

  22. Zanstra, P. E., Welding uniform sized thermocouple junctions from thin wires. J. Phys. E. 9, 526–528 (1976).

    Google Scholar 

References

  1. Boyer, J. S. and Knipling, E. B., Isopiestic technique for measuring leaf water potentials with a thermocouple psychrometer. Proc. Nat. Acad. Sci. U.S.A. 54, 1044–1051 (1965).

    Google Scholar 

  2. Campbell, E. C., Campbell, G. S. and Barlow, W. K., A dewpoint hygrometer for water potential measurement. Agric. Meteorol. 12, 113–121 (1973).

    Google Scholar 

  3. Carman, P. C., Flow of gases through porous media. Butterworth, London (1956).

    Google Scholar 

  4. Cowan, I. R. and Milthorpe, F. L., Plant factors influencing the water status of plant tissues.In Kozlowski, T. T. Water deficits and plant growth. I. Development, control and measurement. Academic Press, New York and London (1968).

    Google Scholar 

  5. Kanemasu, E. T., Thurtell, G. W. and Tanner, C. B., Design, calibration and field use of a stomatal diffusion porometer. Plant Physiol. 44, 881–885 (1969).

    Google Scholar 

  6. Lee C. Y. and Wilke C. R., Measurement of vapor diffusion coefficient. Indian Chem. Eng.46, 2381–2387.

  7. List, R. J., Smithsonian meteorological tables. Smithson. Misc. Collect.114, Smithson. Inst., Washington D.C.

  8. Neumann, H. H. and Thurtell, G. W., A Peltier cooled thermocouple dewpoint hygrometer for in-situ measurement of water potentials.In Brown, R. W. and van Haveren, B. P., eds. Psychrometry in water research Proc. Symp. on Thermocouple Psychrometers. 1971. Utah Agric. Exp. Stn. (1972).

  9. Penman, H. L. and Scofield, R. K., Some physical aspects of assimilation and transpiration. Symp. Soc. Exp. Biol.V, 115–129.

  10. Šestak, Z., Čatsky, J. and Jarvis, P. G., Plant photosynthetic production. Manual and methods. Junk, the Hague (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanstra, P.E., Hagenzieker, F. Comments on the psychrometric determination of leaf water potentialsin situ . Plant Soil 48, 347–367 (1977). https://doi.org/10.1007/BF02187246

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02187246

Keywords

Navigation