, Volume 83, Issue 1, pp 125–151 | Cite as

Impacts of mosquitofish (Gambusia affinis) predation on plankton communities

  • Stuart H. Hurlbert
  • Mir S. Mulla


An investigation of the effects of mosquitofish (Gambusia affinis) predation was conducted in 12 experimental ponds in southern California over a period of 10 months.Gambusia essentially eliminatedDaphnia pulex andCeriodaphnia sp. populations, reducedDiaptomus pallidus andKeratella quadrata populations, had little impact onCyclops vernalis, and caused large increases inK. cochlearis, Polyarthra sp.,Synchaeta sp., andTrichocerca spp. populations and in total phytoplankton.Gambusia caused a decrease in the PIE (probability of interspecific encounter) of the planktonic crustaceans and an increase in the PIE of the planktonic rotifers. Hemiptera, such as neustonicMicrovelia sp. and nektonicBuenoa sp. andNotonecta sp., andHyla regilla tadpoles were absent from fish ponds but sometimes abundant in control ponds.Gambusia caused higher pH and oxygen levels, presumably via its effect on the phytoplankton. The impact ofGambusia on the pond ecosystems was less in winter, when fish numbers and feeding rates were low, than in summer. Results of other fish-plankton studies are summarized in tabular form. A model is proposed to account for variation in the calanoid/cyclopoid ratio; evidence is summarized suggesting that in general calanoids are more susceptible to predation by predaceous zooplankters while cyclopoids are more susceptible to fish predation. Some parallels are drawn between the effects ofGambusia predation and those of insecticide treatments.


phytoplankton zooplankton predation fish Gambusia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Daham, N. K., Huq, M. F. & Sharma, K. P., 1977. Notes on the ecology of fishes of the genus Aphanius and Gambusia affinis in southern Iraq. Freshw. Biol. 7: 245–251.Google Scholar
  2. Anderson, R. S., 1970. Predator-prey relationships and predation rates for crustacean zooplankters from some lakes in western Canada. Can. J. Zool. 48: 1229–1240.Google Scholar
  3. Andersson, G., H. Berggren, Cronberg, G. & Celin, C., 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.Google Scholar
  4. Berg, A. & Grimaldi, E., 1966a. Biologia cell'agone (Alosa fictus lacustris) del Lago Maggiore. Mem. Ist. Ital. Idrobiol. 20: 41–83.Google Scholar
  5. Berg, A. & Grimaldi, E., 1966b. Ecological relationships between planktophagic fish species in the Lago Maggiore. Verh. int. Ver. Limnol. 16: 1065–1073.Google Scholar
  6. Brooks, J. L., 1959. Cladocera, p. 587–656. In W. T. Edmondson (ed.), Freshwater Biology. Wiley & Sons, New York.Google Scholar
  7. Brooks, J. L., 1968. The effects of prey size selection by lake planktivores. Syst. Zool. 17: 272–291.Google Scholar
  8. Brooks, J. L. & Dodson, S. I., 1965. Predation, body size, and composition of plankton. Science 150: 28–35.Google Scholar
  9. Comita, G. W., 1972. The seasonal zooplankton cycles, production and transformations of energy in Severson Lake, Minnesota. Arch. Hydrobiol. 70: 14–66.Google Scholar
  10. Confer, J. L., 1971. Intrazooplankton predation by Mesocyclops edax at natural prey densities. Limnol. Oceanogr. 16: 663–666.Google Scholar
  11. Confer, J. L. & Blades, P. I., 1975. Omnivorous zooplankton and planktivorous fish. Limnol. Oceanogr. 20: 497–686.Google Scholar
  12. Cramer, J. D. & Marzolf, G. R., 1970. Selective predation on zooplankton by gizzard shad. Trans. Amer. Fish. Soc. 99: 320–332.Google Scholar
  13. Dodson, S. I., 1970. Complementary feeding niches sustained by size-selective predation. Limnol. Oceanogr. 15: 131–137.Google Scholar
  14. Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.Google Scholar
  15. Drenner, R. W. & McComas, S. R., 1980. The roles of zooplankter escape ability and fish size-selectivity in the selective feeding and impact of planktovorous fish, pp. 587–593. InL W. C. Kerfoot (ed.), The evolution and ecology of zooplankton communities. Univ. Press of New England, Hanover.Google Scholar
  16. Drenner, R. W., Strickler, J. R. & O'Brien, W. J., 1978. Capture probability: The role of zooplankter escape in the selective feeding of planktivorous fish. J. Fish. Res. Bd. Can. 35: 1370–1373.Google Scholar
  17. Dumont, H. J., 1977. Biotic factors in the population dynamics of rotifers. Arch. Hydrobiol. Beih., Ergebn. Limnol. 8: 98–122.Google Scholar
  18. Edmondson, W. T., 1959. Rotifera, p. 420–484. In W. T. Edmondson (ed.), Freshwater Biology, 2d ed. Wiley and Sons, New York.Google Scholar
  19. Farley, D. G. & Younce, L. C., 1977. Effects of Gambusia affinis (Baird & Girard) on selected nontarget organisms in Fresno County rice fields. Proc. Pap. Calif. Mosquito Control Assoc. 45: 87–94.Google Scholar
  20. Gannon, J. E., 1975. Horizontal distribution of crustacean zooplankton along a cross-lake transect in Lake Michigan. J. Great Lakes Res. 1: 79–91.Google Scholar
  21. Gannon, J. E., 1976. The effects of differential digestion rates of zooplankton by alewife, Alosa pseudoharengus, on determinations of selective feeding. Trans. Amer. Fish. Soc. 105: 89–95.Google Scholar
  22. Gliwicz, Z. M., 1967. Zooplankton and temperature oxygen conditions of two alpine lakes of Tatra Mts. Polsk. Arch. Hydrobiol. 14: 53–72.Google Scholar
  23. Goulden, C. E., 1968. The systematics and evolution of the Moinidae. Trans. Amer. Philos. Soc. 58(6): 1–101.Google Scholar
  24. Grygierek, E., 1962. Wplyw zageszczenia narybku karpi na faune skorupiakow planktonowych. (The influence of increasing carp fry population on crustacean plankton.) Rocz-i Navk. roln., ser. B, 81 (2): 189–210. (English summary).Google Scholar
  25. Grygierek, E., A. Hillbricht-Ilkowska & Spodniewska, I., 1966. The effect of fish on plankton community in ponds. Verh. int. Ver. Limnol. 16: 1359–1366.Google Scholar
  26. Guiset, A., 1977. Stomach contents of Asplanchna and Ploesoma. Arch. Hydrobiol. Beih., Ergebn. Limnol. 8: 126–129.Google Scholar
  27. Hall, D. J., 1970. Predator-prey relationships between yellowperch and Daphnia in a large temperate lake. Trans. Amer. Microsc. Soc. 90: 106–107.Google Scholar
  28. Hall, D. J., Cooper, W. E. & Werner, E. E., 1970. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol. Oceanogr. 15: 839–928.Google Scholar
  29. Hall, D. J., Threlkeld, S. T., Burns, C. W. & Crowley, P. H., 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7: 177–208.Google Scholar
  30. Hillbricht-Ilkowska, A. & Weglenska, T., 1973. Experimentally increased fish stock in pond type Lake Warniak. VII. Numbers, biomass, and production of zooplankton. Ekol. Polsk. 21: 533–552.Google Scholar
  31. Houde, E. D., 1967. Food of pelagic young of the walleye, Stizostedion vitreum vitreum, in Oneida Lake, New York. Trans. Amer. Fish. Soc. 96: 17–24.Google Scholar
  32. Hoy, J. B., Kaufmann, E. E. & O'Berg, A. G., 1972. A large-scale field test of Gambusia affinis and chloropyritus for mosquito control. Mosquito News 32: 161–171.Google Scholar
  33. Hrbácek, J., 1962. Species composition and the amount of zooplankton in relation to the fish stock. Rozpr. Cesk. Akad. Ved. Rada Mat. Prirod. Ved 72(10): 1–116.Google Scholar
  34. Hrbácek, J. & Novotná-Dvoráková, M., 1965. Plankton of four backwaters related to their size and fish stock. Rozpravy Cesk. Akad. Ved, Rada Mat. Prirod. Ved 75(13): 1–64.Google Scholar
  35. Hurlbert, S. H., 1971. The non-concept of species diversity: A critique and alternative parameters. Ecology 52: 577–586.Google Scholar
  36. Hurlbert, S. H., Mulla, M. S. & Willson, H. R., 1972a. The effects of an organophosphorus insecticide on the phytoplankton, zooplankton, and insect populations of freshwater pond. Ecol. Monogr. 42: 269–299.Google Scholar
  37. Hurlbert, S. H., Zedler, J. & Fairbanks, D., 1972b. Ecosystem alternation by mosquitofish (Gambusia) predation. Science 175: 639–641.Google Scholar
  38. Hutchinson, B. P., 1971. The effect of fish predation on the zooplankton of ten Adirondack lakes, with particular reference to the alewife, Alosa pseudoharengus. Trans. Amer. Fish. Soc. 100: 325–335.Google Scholar
  39. Hutchinson, G. E., 1967. A treatise on limnology. Vol. II. Introduction to lake biology and the limnoplankton. Wiley, New York. 1115 pp.Google Scholar
  40. Krumholz, L. A., 1948. Reproduction in the western mosquitofish Gambusia affinis. (Baird & Girard) and its use in mosquito control. Ecol. Monogr. 18: 1–43.Google Scholar
  41. Labounty, J. T. & Deacon, J. E., 1972. Cyprinodon milleri, a new species of pupfish (Family Cyprinodontidae) from Death Valley, California. Copeia 1972: 769–780.Google Scholar
  42. Lane, P. A., 1977. Role of invertebrate predation in structuring zooplankton communities. Verh. Int. Ver. Limnol. 20: 480–485.Google Scholar
  43. Lewis W. M. Jr., 1977. Feeding selectivity of a tropical Chaoborus population. Freshw. Biol. 7: 311–315.Google Scholar
  44. Lewis, W. M., Jr., 1979. Zooplankton Community Analysis. Springer-Verlag, New York. 163 pp.Google Scholar
  45. Lewis, W. M., Jr., 1980. Evidence for stable zooplankton community structure gradients maintained by predation, pp. 625–634. In: W. C. Kerfoot (ed.), The evolution and ecology of zooplankton communities. Univ. Press of New England, Hannover.Google Scholar
  46. Losos, B. & Hetesa, J., 1973. The effect of mineral fertilization and of carp fry on the composition and dynamics of plankton. Hydrobiol. Stud. (Prague) 3: 173–217.Google Scholar
  47. McQueen, J. D., 1969. Reduction of zooplankton standing stocks by predaceous Cyclops bicuspidatus thomasi in Marion Lake, British Columbia. J. Fish. Res. Bd. Canada 26: 1605–1618.Google Scholar
  48. Miller, R. R., 1961. Man and the changing fish fauna of the American Southwest. Pap. Mich. Acad. Sci., Arts and Letters 46: 365–404.Google Scholar
  49. Miller, R. R. & Hubbs, C. L., 1960. The spiny-rayed cyprinid fishes (Plagopterini) of the Colorado River System. Misc. Pub. Mus. Zool., Univ. Mich. 115: 1–39.Google Scholar
  50. Minckley, W. L. & Deacon, J. E., 1968. Southwestern fishes and the enigma of ‘endangered species.’ Science 159: 1424–1431.PubMedGoogle Scholar
  51. Myers, G. S., 1965. Gambusia, the fish destroyer. Austral. Zool. 13: 102.Google Scholar
  52. Neill, W. E., 1975. Experimental studies of microcrustacean competition, community composition, and efficiency of resource utilization. Ecology 56: 809–826.Google Scholar
  53. Neill, W. E. & Peacock, A., 1980. Breaking the bottleneck: Interactions of invertebrate predators and nutrients in oligotrophic lakes, pp. 715–724. In: W. C. Kerfoot (ed.), The evolution and ecology of zooplankton communities. Univ. Press of New England, Hanover.Google Scholar
  54. O'Brien, W. J. & Noyelles, Jr., F. de, 1974. Relationship between nutrient concentration, phytoplankton density, and zooplankton density in nutrient enriched experimental ponds. Hydrobiologia 44: 105–125.Google Scholar
  55. O'Brien, W. J., Slade, N. A. & Vinyard, G. L., 1976. Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology 57: 1304–1310.Google Scholar
  56. Otto, R. G., 1973. Temperature tolerance of the mosquitofish. J. Fish. Biol. 5: 575–585.Google Scholar
  57. Otto, R. G., 1974. The effects of acclimation to cyclic thermal regimes on heat tolerance of Western mosquitofish. Trans. Amer. Fish. Soc. 103: 331–335.Google Scholar
  58. Paine, R. T., 1966. Food web complexity and species diversity. Amer. Natur. 100: 65–75.Google Scholar
  59. Parr, T. D., 1967. Ecology of the summer population of Cladocera, Copepoda, and Rotatoria of Fish Lake, Utah. Southw. Nat. 12: 55–69.Google Scholar
  60. Patalas, K., 1972. Crustacean plankton and the eutrophication of St. Lawrence Great Lakes. J. Fish. Res. Bd. Canada 29: 1451–1462.Google Scholar
  61. Pourriot, R., 1965. Notes taxinomiques sur quelques rotifères planctoniques. Hydrobiologia 26: 579–604.Google Scholar
  62. Reddy, S. R., 1975. Effect of water temperature on the predatory efficiency of Gambusia affinis. Experientia 31: 801–802.Google Scholar
  63. Reich, K. & Aschner, M., 1947. Mass development and control of the phytoflagellate Prymnesium parvum in fish ponds in Palestine. Palestine J. Bot. Jerusalem 4: 14–23.Google Scholar
  64. Shapiro, J., Lamarra, V. & Lynch, M., 1975. Biomanipulation: An ecosystem approach to lake restoration, pp. 85–96. In: Proceedings of a symposium on water quality management through biological control, P. L. Brezonik and J. L. Fox (eds.). University of Florida, Gainesville, January 1975.Google Scholar
  65. Shilo, M. & Shilo, M., 1955. Control of the phytoflagellate Prymnesium parvum. Verh. int. Ver. Limnol. 12: 233–240.Google Scholar
  66. Sicault, G., 1934. Note sur l'adaptation du Gambusia holbrooki aux eaux salées. Bull. Soc. Pathol. exot. 27: 485–588.Google Scholar
  67. Sokal, R. R. & Rohlf, F. J., 1969. Biometry. Freeman and Co., San Francisco. 776 pp.Google Scholar
  68. Spodniewska, I. & Hillbricht-Ilkowska A., 1973. Experimentally increased fish stock in the pond type Lake Warniak. VI. Biomass and production of phytoplankton. Ekol. Polsk. 21: 519–532.Google Scholar
  69. Straskraba, M., 1967. Quantitative study on the littoral zooplankton of the Poltruba backwater with an attempt to disclose the effect on fish. Rozpr. Cesk. Akad. Ved, Rada Mat. Prirod. Ved 77: 7–34.Google Scholar
  70. Szlauer, L., 1965. The refuge ability of plancton animals before models of plancton-eating animals. Polsk. Arch. Hydrobiol. 13: 89–95.Google Scholar
  71. Voigt, M., 1956. Rotatoria. Die Radertiere Mitteleuropas, 2 vol. Borntraeger, Berlin.Google Scholar
  72. Wells, L., 1970. Effects of alewife predation on zooplankton populations in Lake Michigan. Limnol. Oceanogr. 15: 556–565.Google Scholar
  73. Werner, E. E. & Hall, D. J., 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052.Google Scholar
  74. Wilson, M. S., 1959. Calanoida, p. 738–794. In: W. T. Edmondson (ed.), Freshwater Biology. Wiley & Sons, New York.Google Scholar
  75. Yeatman, H. C., 1959. Cyclopoida, p. 795–815. In: W. T.Edmondson (ed.), Freshwater Biology. Wiley & Sons, New York.Google Scholar

Copyright information

© Dr W. Junk Publishers 1981

Authors and Affiliations

  • Stuart H. Hurlbert
    • 1
  • Mir S. Mulla
    • 2
  1. 1.Dept. of BiologySan Diego State UniversitySan DiegoU.S.A.
  2. 2.Dept. of EntomologyUniversity of CaliforniaRiversideU.S.A.

Personalised recommendations