Advertisement

Hydrobiologia

, Volume 83, Issue 3, pp 461–464 | Cite as

The temperature dependence of the acute toxicity of copper to a freshwater pond snail, Viviparus bengalensis L.

  • P. K. Gupta
  • B. S. Khangarot
  • V. S. Durve
Article

Abstract

Static bioassays with copper (as CuSO4 · 5H2O) were conducted in laboratory with a freshwater pond snailViviparus bengalensis, at different environmental temperatures. The 96 hr LC50 values in ppm of Cu were 0.060 at 32.5 °C; 0.066 at 24 °C; 0.09 at 27.3 °C and 0.39 at 20.3 °C. In higher copper concentrations some behavioural changes such as secretion of mucus, discharge of eggs and embryos were noted. The results indicate that toxicity to copper increases with temperature increase.

Keywords

snail copper toxicity temperature dependence testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apha, 1975. Standard methods for the examination of water and waste water. 14th edition, American Public Health Association, Inc., New York. N.Y.Google Scholar
  2. Burton, D. T., Morgan, E. L. & Cairns, J. Jr. 1972. Mortality curves of bluegills (Lepomis macrochirus Raf.) simultaneously exposed to temperature and zinc stress. Trans. Am. Fish. Soc. 101: 435–441.Google Scholar
  3. Cairns, J. Jr., & Scheier, A., 1957. The effects of temperature and hardness of water upon the toxicity of zinc to the pond snail, Physa heterostropha (Say.). Notulae Noturae 208: 1–12.Google Scholar
  4. Cairns, J. Jr., Bahns, T. K., Burton, D. T., Dickson, K. L., Sparks, R. E. & Waller, W. T., 1971. The effects of pH, solubility and temperature upon the acute toxicity of zinc to the bluegill sunfish (Lepomis macrochirus Raf.) Trans. Kansas Acad. Sci. 74: 81–92.Google Scholar
  5. Cairns, J. Jr., Heath, A. G. & Paker, B. C., 1975. The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47: 135–171.Google Scholar
  6. Cairns, J. Jr., Calhoun, W. F., McGinniss, M. J. & Straka, W., 1976. Aquatic organisms response to severe stress following acutely sublethal toxicant exposure. Wat. Resour. Bull. 12: 1233–1243.Google Scholar
  7. Cairns, J. Jr., Buikema, A. L. Jr., Heath, A. G. & Parker, B. C., 1978. Effects of temperature on aquatic organism sensitive to selected chemicals. Virginia water Resources Research Centre. Bull. 106: 1–88.Google Scholar
  8. Eisler, R., 1977. Acute toxicities of selected heavy metals to the softshell clam Mya arenaria. Bull. Environ. Contam. Toxicol., 17: 137–145.Google Scholar
  9. Harris, E. K., 1959. Confidence limits for the LD50 using moving-average-angle method. Biometrics 15: 424–432.Google Scholar
  10. Hodson, P. V., 1975. Zinc uptake by Atlantic salmon (Salmo salar) exposed to a lethal concentration of zinc at 3, 11 and 19 °C. J. Fish. Res. Bd. Can. 32: 2552–2556.Google Scholar
  11. Hodson, P. V. & Sprague, J. B., 1975. Temperature-induced changes in acute toxicity of zinc to Atlantic salmon (Salmo salar). J. Fish. Res. Bd. Can. 32: 1–10.Google Scholar
  12. Khangarot, B. S. In Press. The acute toxicity of zinc to Puntius sophore. J. Ichthyology.Google Scholar
  13. Mathur, S., Khangarot, B. S. & Durve, V. S. In Press. Acute toxicity of mercury, copper and zinc to a freshwater snail Lymnaea luteola (Lamarck) Acta. Hydrochem. et Hydrobiol.Google Scholar
  14. Wurtz, C. B., 1962. Zinc effects on freshwater mollusks. Nautilus: 53–61.Google Scholar

Copyright information

© W. Junk Publishers 1981

Authors and Affiliations

  • P. K. Gupta
    • 1
  • B. S. Khangarot
    • 2
  • V. S. Durve
    • 1
  1. 1.Dept. of Limnology and FisheriesUniversity of UdaipurUdaipurIndia
  2. 2.Postgraduate Department of ZoologyBhupal Nobles' CollegeUdaipurIndia

Personalised recommendations