Skip to main content
Log in

Plasma kinetics in the solar wind

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

An account is given of the observations and theoretical ideas concerning the role of kinetic processes in the solar wind. This includes, first of all, the measurements on distribution functions of plasma electrons and protons, the relation of the observed non-thermal electron features with the concept of an exospheric expansion of the solar corona, and the connection of non-thermal proton distributions with bulk flow inhomogeneities of the wind. A discussion is given of the present understanding of the connection between observed features of the particle distributions and anomalous values of some plasma transport coefficients, which in turn determine the actual values of macroscopic plasma parameters.

A further topic of the review is that of possible kinetic processes occurring within small scale structures in the solar wind, like collisionless shocks, various types of discontinuities and D-sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asbridge, J. R., Bame, S. J., and Feldman, W. C.: 1973, ‘Variations in the Helium Component of the Solar Wind’,EOS Trans. Am. Geophys. Un. 54, 440.

    Google Scholar 

  • Asbridge, J. R., Bame, S. J., and Feldman, W. C.: 1974, ‘Abundance Differences in Solar Wind Double Streams’,Solar Phys. 37, 451.

    Google Scholar 

  • Asbridge, J. R., Bame, S. J., Feldman, W. C., and Montgomery, M. D.: 1976, ‘Helium and Hydrogen Velocity Differences in the Solar Wind’,J. Geophys. Res. 81 2719.

    Google Scholar 

  • Bame, S. J., Asbridge, J. R., Feldman, W. C., Gary, S. P., and Montgomery, M. D.: 1975, ‘Evidence for Local Ion Heating in the Solar Wind High Speed Streams’,Geophys. Res. Lett. 2, 373.

    Google Scholar 

  • Barnes, A.: 1968, ‘Collisionless Heating of the Solar Wind Plasma, 1, Theory of the Heating of Collisionless Plasmas by Hydromagnetic Waves’,Astrophys. J. 154, 751.

    Google Scholar 

  • Barnes, A.: 1969, ‘Collisionless Heating of the Solar Wind Plasma, 2, Application of the Theory of Plasma Heating by Hydromagnetic Waves’,Astrophys. J. 155, 311.

    Google Scholar 

  • Barnes, A.: 1974, ‘Theoretical Studies of the Large-Scale Behaviour of the Solar Wind’,Advances Electronics and Electron Physics 36, 1.

    Google Scholar 

  • Barnes, A. and Hollweg, J. V.: 1974, ‘Large-Amplitude Hydromagnetic Waves’,J. Geophys. Res. 79, 2302.

    Google Scholar 

  • Bavassano, B., Dobrowolny, M., and Mariani, F.: 1976, ‘Evidence of Magnetic Field Line Merging in the Solar Wind’,J. Geophys. Res. 81, 1.

    Google Scholar 

  • Beinroth, H. J. and Neubauer, F. M.: 1976, ‘Relationship between Whistlewave Activity and the Solar Wind Microstructure’,EOS Trans. Am. Geophys. Un. 57, 672.

    Google Scholar 

  • Belcher, J. W. and Davis, L. Jr.: 1971, ‘Large Amplitude Alfvén Waves in the Interplanetary Medium, 2’,J. Geophys. Res. 76, 3534.

    Google Scholar 

  • Burlaga, L. F.: 1968, ‘Microscale Structures in the Interplanetary Medium’,Solar Phys. 4, 67.

    Google Scholar 

  • Burlaga, L. F.: 1969, ‘Large Velocity Discontinuities in the Solar Wind’,Solar Phys. 7, 72.

    Google Scholar 

  • Burlaga, L. F.: 1971, ‘Hydromagnetic Waves and Discontinuities in the Solar Wind’,Space Sci. Rev. 12, 600.

    Google Scholar 

  • Burlaga, L. F., Lemaire, J. F., and Turner, J. M.: 1976, ‘Interplanetary Boundary Layers at 1 AU’, Goddard Space Flight Center, X-692-76-168, Greenbelt, Maryland.

  • Burlaga, L. F. and Ness, N. F.: 1968, ‘Macro- and Micro-Structure of the Interplanetary Magnetic Field’,Canadian J. Phys. 46, S962.

    Google Scholar 

  • Burlaga, L. F. and Ness, N. F.: 1969, ‘Tangential Discontinuities in the Solar Wind’,SolarPhys. 9,467.

    Google Scholar 

  • Burlaga, L. F. Ogilvie, K. W.: 1973, ‘Solar Wind Temperature and Speed’,J. Geophys. Res. 78, 2028.

    Google Scholar 

  • Burlaga, L. F., Ogilvie, K. W., Fairfield, D. H., Montgomery, M. D., and Bame, S. J.: 1971, ‘Energy Transfer at Colliding Streams in the Solar Wind’,Astrophys. J. 164, 137.

    Google Scholar 

  • Burlaga, L. F. and Scudder, J. D.: 1974, ‘Sweet's Mechanism in the Solar Wind’,Astrophys. J. 191, L149.

    Google Scholar 

  • Cuperman, S. and Harten, A.: 1971, ‘The Electron Temperature in the Two-Component Solar Wind’,Astrophys. J. 163, 383.

    Google Scholar 

  • Dobrowolny, M.: 1968, ‘Instability of a Neutral Sheet’,Nuovo Cimento 55B, 427.

    Google Scholar 

  • Dobrowolny, M.: 1972, ‘Kelvin Helmholtz Instability in a High β Collisionless Plasma’,Phys. of Fluids 15, 2263.

    Google Scholar 

  • Dobrowolny, M.: 1977, ‘Velocity Shear Instability of Alfvén Waves in a Highß Collisionless Plasma’,Phys. of Fluids, in press.

  • Dobrowolny, M. and Formisano, V.: 1973, ‘The Structure of the Earth's Bow Shock’Riv. Nuovo Cimento 3,419.

    Google Scholar 

  • Durney, B. R.: 1973, ‘Solar Wind Properties at the Earth as Predicted by the One-Fluid Model with Helioclassical Thermal Electron Conductivity’J. Geophys. Res. 78, 7229.

    Google Scholar 

  • Eviatar, A. and Schulz, M.: 1970, ‘Ion Temperature Anisotropies and the Structure of the Solar Wind’,Planet. Space Sci. 18, 321.

    Google Scholar 

  • Eviatar, A. and Schulz, M.: 1976, ‘Quasi-Exospheric Heat Flux of Solar-Wind Electrons’,Astrophys. Space Sci. 39, 65.

    Google Scholar 

  • Feldman, W. C., Abraham-Shrauner, B., Asbridge, J. R., and Bame, S. J.: 1976c, ‘The Internal Plasma State of the High-Speed Solar Wind at 1 A.U.’,Physics of Solar Planetary Environments, Vol I, ed. by Donald J. Williams, Am. Geophys. Un., Library of Congress No. 76-29443 (Washington), p. 413.

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., Gary, S. P., and Montgomery, M. D.: 1976a, ‘Electron Parameter Correlations in High-Speed Streams and Heat Flux Instabilities’,J. Geophys. Res. 81, 2377.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J. Gary, S. P., Montgomery, M. D., Zinc, S. M., and Fairfield, D. H.: 1976b, ‘Evidence for the Regulation of the Solar Wind Heat Flux at 1 AU’,J. Geophys. Res. 81, 5207.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., and Montgomery, M. D.: 1973a, ‘Double Ion Streams in the Solar Wind’,J. Geophys. Res. 78, 2017.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., and Montgomery, M. D.: 1973b, ‘Solar Wind Heat Transport in the Vicinity of the Earth's Bow Shock’,J. Geophys. Res. 78, 3697.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., and Montgomery, M. D.: 1974a, ‘Interplanetary Solar Wind Streams’,Rev. Geophys. Space Phys. 12, 715.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., Montgomery, M. D., and Gary, S. P.: 1975,J. Geophys. Res. 80, 4181.

    Google Scholar 

  • Feldman, W. C., Montgomery, M. D., Asbridge, J. R., Bame, S. J., and Lewis, H. R.: 1974b, ‘Interplanetary Heat Conduction - IMP 7 Results’Solar Wind Three, ed. by C. T. Russell, Inst. Geophys. Planet. Phys., University of California, Los Angeles, p. 334.

    Google Scholar 

  • Formisano, V. and Moreno, G.: 1971, ‘Helium and Heavy Ions in the Solar Wind’,Riv. Nuovo Cimento 1, 365 (1971).

    Google Scholar 

  • Forslund, D. W.: 1970, ‘Instabilities Associated with Heat Conduction in the Solar Wind and Their Consequences’,J. Geophys. Res. 75, 17.

    Google Scholar 

  • Forslund, D. W., Morse, R. L., and Nielsen, C. W.: 1970, ‘Electron Cyclotron Drift Instability’,Phys. Rev. Letters 25, 1266.

    Google Scholar 

  • Fredricks, R. W.: 1969, ‘Electrostatic Heating of Solar Wind Ions Beyond 0.1 AU’,J. Geophys. Res. 74, 2919.

    Google Scholar 

  • Fredricks, R. W., Crook, G. M., Kennel, C. F., Green, I. M., Scarf, F. L., Coleman, P. J. Jr., and Russell, C. T.: 1970, ‘OGO 5 Observations of Electrostatic Turbulence in Bow Shock Magnetic Structures’,J. Geophys. Res. 75, 3751.

    Google Scholar 

  • Fried, B. D. and Gould, R. W.: 1961, ‘Longitudinal Ion Oscillations in a Hot Plasma’,Phys. of Fluids 4, 139 (1961).

    Google Scholar 

  • Friedman, M. and Hamberger, S. M.: 1969, ‘Plasma Turbulence in Solar Flares as an Explanation of Some Observed Phenomena’,Solar Phys. 8, 104 (1969).

    Google Scholar 

  • Furth, H. P., Killeen, J., and Rosenbluth, M. N.: 1963, ‘Finite Resistivity Instabilities of a Sheet Pinch’,Phys. Fluids 6, 459.

    Google Scholar 

  • Gary, S. P., Feldman, W. C., Forslund, D. W., and Montgomery, M. D.: 1975a, ‘Electron Heat Flux Instabilities in the Solar Wind’,Geophys. Res. Lett. 2, 79.

    Google Scholar 

  • Gary, S. P., Feldman, W. C., Forslund, D. W., and Montgomery, M. D.: 1975b ‘Heat Flux Instabilities in the Solar Wind’,J. Geophys. Res. 80, 4197.

    Google Scholar 

  • Gary, S. P., Montgomery, M. D., Feldman, W. C., and Forslund, D. W.: 1976, ‘Proton Temperature Anisotropy Instabilities in the Solar Wind’,J. Geophys. Res 81, 1241.

    Google Scholar 

  • Goldstein, M. L. and Eviatar, A.: 1973, ‘Turbulent Heating of Colliding Streams in the Solar Wind’,Astrophys. J. 179, 627.

    Google Scholar 

  • Goodrich, C. C. and Lazarus, A. J.: 1976, ‘Suprathermal Protons in the Interplanetary Solar Wind’,J. Geophys. Res. 81, 2750.

    Google Scholar 

  • Greenstadt, E. W. and Fredricks, R. W.: 1974, ‘Plasma Instability Modes Related to the Earth's Bow Shock’,Magnetospheric Physics, ed. by B. M. McCormac, Reidel Publ. Co., Dordrecht, Holland, p. 281.

    Google Scholar 

  • Greenstadt, E. W., Russell, C. T., Scarf, F. L., Formisano, V., and Neugebauer, M.: 1975, ‘Structure of the Quasi-Perpendicular, Laminar Bow Shock’,J. Geophys. Res. 80, 502.

    Google Scholar 

  • Hartle, R. E., and Sturrock, P. A.: 1968, ‘Two Fluid Model of the Solar Wind’,Astrophys. J. 151, 1155.

    Google Scholar 

  • Hirshberg, J.: 1973, ‘Helium Abundance of the Sun’,Rev. Geophys. Space Phys. 11, 115.

    Google Scholar 

  • Hirshberg, J., Asbridge, J. R., and Robbins, D. E.: 1974, ‘The Helium Component of Solar Wind Velocity Streams’,J. Geophys. Res. 79, 934.

    Google Scholar 

  • Hollweg, J. V.: 1971, ‘Non-Linear Landau Damping of Afvén Waves’,Phys. Rev. Lett. 27, 1349 (1971).

    Google Scholar 

  • Hollweg, J. V.: 1972, ‘Supergranulation-Driven Afvén Waves in the Solar Chromosphere and Related Phenomena’,Cosmic Electrod. 2, 423.

    Google Scholar 

  • Hollweg, J. V.: 1974, On Electron Heat Conduction in the Solar Wind’,J. Geophys. Res. 79, 3845.

    Google Scholar 

  • Hollweg, J. V.: 1975, ‘Waves and Instabilities in the Solar Wind’,Rev. Geophys. Space Phys. 13, 263.

    Google Scholar 

  • Hollweg, J. V.: 1976, ‘Collisionless Electron Heat Conduction in the Solar Wind’,J. Geophys. Res. 81, 1649.

    Google Scholar 

  • Hollweg, J. V. and Völk, H. J.: 1970, ‘New Plasma Instabilities in the Solar Wind’,J. Geophys. Res. 75, 5297.

    Google Scholar 

  • Hundhausen, A. J.: 1970, ‘Composition and Dynamics of the Solar Wind Plasma’,Rev. Geophys. Space Phys. 8, 729.

    Google Scholar 

  • Hundhausen, A. J.: 1972, ‘Coronal Expansion and Solar Wind’,Physics and Chemistry in Space, Vol. 5, Springer Verlag, Berlin.

    Google Scholar 

  • Hundhausen, A. J.: 1973a, ‘Non Linear Model of High Speed Solar Wind Streams’,J. Geophys. Res. 78, 1528.

    Google Scholar 

  • Hundhausen, A. J.: 1973b, ‘Solar Wind Stream Interactions and Interplanetary Heat Conduction’,J. Geophys. Res. 78, 7996.

    Google Scholar 

  • Hundhausen, A. J. and Montgomery, M. D.: 1971, ‘Heat Conduction and Nonsteady Phenomena in the Solar Wind’,J. Geophys. Res. 76, 2236.

    Google Scholar 

  • Jackson, E. A.: 1960, ‘Drift Instabilities in a Maxwellian Plasma’,Phys. Fluids 3, 786.

    Google Scholar 

  • Jockers, K.: 1970, ‘Solar Wind Models Based on Exospheric Theories’,Astron. Astrophys. 6, 219.

    Google Scholar 

  • Kellog, P. J.: 1964, ‘Solitary Waves in Cold Collisionless Plasma,Phys. of Fluid 7, 1555.

    Google Scholar 

  • Krall, N. A. and Book, D. L.: 1969, ‘Ion Sound Instability in a Collisionless Shock Wave’,Phys. Fluids 12, 347.

    Google Scholar 

  • Lakhina, G. S. and Buti, B.: 1976, ‘Stability of Solar Wind Double Ion Streams’,J. Geophys. Res. 81, 2135.

    Google Scholar 

  • Lemaire, J. and Burlaga, L. F.: 1976, ‘Diamagnetic Boundary Layers in the Solar Wind: A Kinetic Theory’,Astrophys. Space Sci. 45, 303.

    Google Scholar 

  • Montgomery, M. D.: 1972a, ‘Average Thermal Characteristics of Solar Wind Electrons’,Solar Wind, NASA SP-308, p. 208.

  • Montgomery, M. D.: 1972b, ‘Thermal Energy Transport in the Solar Wind’,Cosmic Plasma Physics, ed. by K. Schindler, Plenum Press, New York, p. 61.

    Google Scholar 

  • Montgomery, M. D., Bame, S. J., and Hundhausen, A. J.: 1968, ‘Solar Wind Electrons: Vela 4 Measurements’,J. Geophys. Res. 73, 4999.

    Google Scholar 

  • Montgomery, M. D., Gary, S. P., Feldman, W. C., and Forslund, D. W.: 1976, ‘Electromagnetic Instabilities Driven by Unequal Proton Beams in the Solar Wind’,J. Geophys. Res. 81, 2743.

    Google Scholar 

  • Neugebauer, M. and Snyder, C. W.: 1966, ‘Mariner 2 Observations of the Solar Wind: 1. Average Properties’,J. Geophys. Res. 71, 4469.

    Google Scholar 

  • Ogilvie, K. W.: 1975, ‘Differences between the Bulk Speeds of Hydrogen and Helium in the Solar Wind’,J. Geophys. Res. 80, 1335.

    Google Scholar 

  • Ogilvie, K. W., Scudder, J. D., and Sugiura, M.: 1971, ‘Electron Energy Flux in the Solar Wind’,J. Geophys. Res. 76, 8165.

    Google Scholar 

  • Papadopoulos, K.: 1971, ‘Ion Thermalization in the Earth's Bow Shock’,J. Geophys. Res. 76, 3806.

    Google Scholar 

  • Papadopoulos, K.: 1973a, ‘Electrostatic Turbulence at Colliding Plasma Streams as a Source of Ion Heating in the Solar Wind’,Astrophys. J. 179, 931.

    Google Scholar 

  • Papadopoulos, K.: 1973b, ‘Nonthermal Turbulent Heating in the Solar Envelope’,Astrophys. J. 179, 939.

    Google Scholar 

  • Papadopoulos, K., Clark, R. W., and Wangner, C. E.: 1974, ‘Stimulation of Colliding Solar Wind Streams with Multifluid Codes’,Solar Wind Three, ed. by C. T. Russell, Inst. Geophys. Planet. Phys., University of California, Los Angeles, p. 343.

    Google Scholar 

  • Parker, E. N.: 1963, ‘The Solar-Flare Phenomenon and the Theory of Reconnection and Annihilation of Magnetic Fields’,Astrophys. J. Suppl. 8, 177.

    Google Scholar 

  • Perkins, R. W.: 1973, ‘Heat Conductivity, Plasma Instabilities and Radio Scintillations in the Solar Wind’,Astrophys. J. 179, 637.

    Google Scholar 

  • Petschek, H. E.: 1964, ‘Magnetic Field Annihilation’,AAS-NASA Symposium on the Physics of Solar Flares, ed. by W. N. Hess, NASA SP-50, p. 425.

  • Rosenbauer, H., Miggenrieder, H., Montgomery, M., and Schwenn, R.: 1976, ‘Preliminary Results of the HELIOS Plasma Measurements’,Physics of Solar Planetary Environments. Vol. I, ed. by Donald J. Williams, Am. Geophys. Un., Library of Congress No. 76-29443 (Washington), p. 319.

  • Scarf, F. L.: 1970, ‘Microscopic Structure of the Solar Wind’,Space Sci. Rev. 11, 234.

    Google Scholar 

  • Scarf, F. L., Mihalov, J. D., Wolfe, J. H., and Burlaga, L. F.: 1976, ‘Variations in Plasma Characteristics near D Sheets in the Solar Wind’,J. Geophys. Res. 81, 5431.

    Google Scholar 

  • Scarf, F. L. and Russell, C. T.: 1976, ‘Magnetospheric Dynamics and Wave-Particle Interactions’The Scientific Satellite Programme During the International Magnetospheric Study, ed. by Knott and Battrick, Reidel Publ. Co., Dordrecht, Holland, p. 261.

    Google Scholar 

  • Schulz, M. and Eviatar, A.: 1972, ‘Electron Temperature Asymmetry and the Structure of the Solar Wind’,Cosmic Electrodynamics 2, 402.

    Google Scholar 

  • Scudder, J. D., Lind, D. L., and Ogilvie, K. W.: 1973, ‘Electron Observations in the Solar Wind and Magnetosheath’,J. Geophys. Res. 78, 6535.

    Google Scholar 

  • Schindler, K. M. and Soop, M.: 1968, ‘Stability of Plasma Sheaths’,Phys. of Fluids 11, 1192.

    Google Scholar 

  • Sestero, A.: 1964, ‘Structure of Plasma Sheaths’,Phys. Fluids 7, 44.

    Google Scholar 

  • Siscoe, G. L., Davis, L. Jr., Coleman, P. J. Jr., Smith, E. J., and Jones, D. E.: 1968, ‘Power Spectra and Discontinuities of the Interplanetary Magnetic Field: Mariner 4’,J. Geophys. Res. 73, 61.

    Google Scholar 

  • Sonnerup, B. U. O. and Priest, E. R.: 1975, ‘Resistive MHD Stagnation-Point Flows at a Current Sheet’,J. Plasma Phys. 14, 283.

    Google Scholar 

  • Spitzer, L. Jr. and Harm, R.: 1953, ‘Transport Phenomena in a Completely Ionized Gas’,Phys. Rev. 89, 977.

    Google Scholar 

  • Sweet, P. A.: 1956, Proceedings of the International Astronomical Union Symposium on Electromagnetic Phenomena in Cosmical Physics, Stockholm.

  • Turner, J. M., Burlaga, L. F., Ness, N. F., and Lemaire, J. F.: 1976, ‘Magnetic Holes in the Solar Wind’, Goddard Space Flight Center, X-692-76-90, Greenbelt, Maryland (1976).

  • Vasyliunas, V. M.: 1975, ‘Theoretical Models of Magnetic Field Line Merging, l’,Rev. Geophys. Space Phys. 13, 303.

    Google Scholar 

  • Völk, H. J.: 1975, ‘Microstructure of the Solar Wind’Space Sci. Rev. 17, 255.

    Google Scholar 

  • Wolff, C. L., Brandt, J. C., and Southwick, R. C.: 1971, ‘A Two-Component Model of the Quiet Solar Wind with Viscosity, Magnetic Field and Reduced Heat Conduction’,Astrophys. J. 165, 181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrowolny, M., Moreno, G. Plasma kinetics in the solar wind. Space Sci Rev 20, 577–620 (1977). https://doi.org/10.1007/BF02186897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186897

Keywords

Navigation