Advertisement

Journal of Statistical Physics

, Volume 77, Issue 1–2, pp 351–359 | Cite as

On the slow decay ofO(2) correlations in the absence of topological excitations: Remark on the Patrascioiu-Seiler model

  • Michael Aizenman
Articles

Abstract

For spin models withO(2)-invariant ferromagnetic interactions, the Patrascioiu-Seiler constraint is |arg(S(x))−arg(S(y))|⩽θ0 for all |x−y|=1. It is shown that in two-dimensional systems of two-component spins the imposition of such contraints with θ0 small enough indeed results in the suppression of exponential clustering. More explicitly, it is shown that in such systems on every scale the spin-spin correlation function obeys 〈S(x)·S(y)〉≥1/(2|x−y|2) at any temperature, includingT=∞. The derivation is along the lines proposed by A. Patrascioiu and E. Seiler, with the yet unproven conjectures invoked there replaced by another geometric argument.

Key Words

Continuous symmetry Kosterlitz-Thouless transition decay of correlations Fortuin-Kasteleyn representation topological charges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Patrascioiu and E. Seiler, Phase structure of two-dimensional spin models and percolation,J. Stat. Phys. 69:573 (1992).CrossRefGoogle Scholar
  2. 2.
    J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973).Google Scholar
  3. 3.
    J. Frohlich and T. Spencer,Commun. Math. Phys. 81:527 (1981).CrossRefGoogle Scholar
  4. 4.
    P. W. Kasteleyn and C. M. Fortuin,J. Phys. Soc. 26(Suppl.):11 (1969); C. M. Fortuin and P. W. Kasteleyn,Physica 57:536 (1972).Google Scholar
  5. 5.
    R. H. Swendsen and J. S. Wang,Phys. Rev. Lett. 56:86 (1987).CrossRefGoogle Scholar
  6. 6.
    M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman,J. Stat. Phys. 50:1 (1988).CrossRefGoogle Scholar
  7. 7.
    M. Aizenman and B. Nachtergaele, Geometric aspects of quantum spin states,Commun. Math. Phys., to appear (1994).Google Scholar
  8. 8.
    H. J. Braskamp, E. H. Lib, and J. L. Lebowitz, The statistical mechanics of anharmonic lattices, inBulletin of the International Statistical Institute, Vol. XLVI, Book 1 (Proceedings of the 40th session, Warsaw 1975).Google Scholar
  9. 9.
    U. Wolff,Phys. Rev. Lett. 62:361 (1989).CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Michael Aizenman
    • 1
  1. 1.Departments of Physics and MathematicsPrinceton UniversityPrinceton

Personalised recommendations