Skip to main content
Log in

Computer simulation of random sequential adsorption of two interacting species on a lattice

Journal of Statistical Physics Aims and scope Submit manuscript

Cite this article


A computer-simulation model is introduced to study the variation in the coverage and porosity in a binary system by random sequential adsorption on a periodic square lattice. We study the effects of the range of the repulsive interaction between unlike species and of the probability of deposition of each particle type. For all choices of the interaction range there is a minimum in the total coverage of the lattice which occurs for equal deposition probability of the two species. The saturation coverage decreases on increasing the range of the interaction. For proper choices of the parameters of the model, regimes exist in which either pores or particles of one type form an infinite percolating network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. P. F. Flory,J. Am. Chem. Soc. 61:1518 (1939).

    Google Scholar 

  2. D. A. King and M. G. Wells,Proc. R. Soc. Lond. A 339:245 (1974); N. O. Wolf, D. R. Burgess, and D. K. Hoffman,Surf. Sci. 100:453 (1980).

    Google Scholar 

  3. L. Finegold and J. T. Donnell,Nature 278:443 (1979).

    Google Scholar 

  4. Y. Pomeau,J. Phys. A 13:L193 (1980).

    Google Scholar 

  5. J. Feder,J. Theor. Biol. 87:237 (1980).

    Google Scholar 

  6. R. H. Swendsen,Phys. Rev. A. 24:504 (1981).

    Google Scholar 

  7. R. D. Vigil and R. M. Ziff,J. Chem. Phys. 91:2599 (1989).

    Google Scholar 

  8. J. W. Evans,J. Phys. A 23:2227 (1990); J. W. Evans, D. R. Evans, D. R. Burgess, and D. K. Hoffman,J. Chem. Phys. 79:5011 (1983).

    Google Scholar 

  9. J. Talbot, G. Tarjus, and P. Schaaf,Phys. Rev. A 40:4808 (1989).

    Google Scholar 

  10. J.-S. Wang, P. Nielaba, and V. Privman,Mod. Phys. Lett. B 7:189 (1993), and references therein.

    Google Scholar 

  11. G. Tarjus and J. Talbot,J. Phys. A 24:L913 (1991).

    Google Scholar 

  12. R. D. Vigil and R. M. Ziff,J. Chem. Phys. 93:8270 (1990).

    Google Scholar 

  13. N. M. Svrakiv and M. Henkel,J. Phys. (Paris)I 1:791 (1991).

    Google Scholar 

  14. J. Becklehimer and R. B. Pandey,Physica A 187:71 (1992); and unpublished work under preparation.

    Google Scholar 

  15. M. Sahimi and A. O. Imdakm,Phys. Rev. Lett. 66:1169 (1991).

    Google Scholar 

  16. D. Stauffer and A. Aharony,Introduction to Percolation Theory (Taylor and Francis, London, 1992); M. Sahimi,Application of Percolation Theory (Taylor and Francis, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Communicated by D. Stauffer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinkovits, R.S., Pandey, R.B. Computer simulation of random sequential adsorption of two interacting species on a lattice. J Stat Phys 74, 457–463 (1994).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Key Words