Skip to main content
Log in

Optimal multigrid algorithms for calculating thermodynamic limits

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Beyond eliminating the critical slowing down, multigrid algorithms can also eliminate the need to produce many independent fine-grid configurations for averaging out their statistical deviations, by averaging over the many samples produced in coarse grids during the multigrid cycle. Thermodynamic limits can be calculated to accuracy ɛ in justO-2) computer operations. Examples described in detail and with results of numerical tests are the calculation of the susceptibility, the σ-susceptibility, and the average energy in Gaussian models, and also the determination of the susceptibility and the critical temperature in a two-dimensional Ising spin model. Extension to more advanced models is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter, The multi-grid methods for the diffusion equation with strongly discontinuous coefficients.SIAM J. Sci. Stat. Comp. 2:430–454 (1981).

    Google Scholar 

  2. A. Brandt, Multigrid Techniques: 1984 Guide, with Applications to Fluid Dynamics [available as GMD Studien Nr. 85, GMD-AIW, Postfach 1240, D-5205, St. Augustin 1, Germany].

  3. A. Brandt, Multilevel computations: Reviews and recent developments, inPreliminary Proceedings 3rd Copper Mountain Conference on Multigrid Methods (April 1987); see also inMultigrid Methods: Theory Applications and Super-computing, S. F. McCormick, ed. (Marcel Dekker, New York, 1988), pp. 35–62.

  4. A. Brandt, The Weizmann Institute research in multilevel computation: 1988 report, inProceedings 4th Copper Mountain Conference on Multigrid Methods, J. Mandelet al., eds. (SIAM, 1989), pp. 13–53.

  5. A. Brandt, Multigrid methods in lattice field computations,Nucl. Phys. B. (Proc. Suppl.) 26:137–180 (1992).

    Google Scholar 

  6. A. Brandt, D. Ron, and D. J. Amit, Multi-level approaches to discrete-state and stochastic problems, inMultigrid Methods, W. Hackbusch and U. Trottenberg, eds. (Springer-Verlag, Berlin, 1986), pp. 66–99.

    Google Scholar 

  7. M. Galun, Optimal multigrid algorithms for model problems in statistical mechanics, M.Sc. Thesis, Weizmann Institute of Science (1992).

  8. J. Goodman and A. D. Sokal, Multigrid Monte Carlo methods for lattice field theories,Phys. Rev. Lett. 56:1015–1018 (1986).

    Google Scholar 

  9. S. Gottlieb, W. Liu, D. Toussaint, and R. L. Sugar, Testing an exact algorithm for simulation of fermionic QCD,Phys. Rev. D 35:2611 (1987).

    Google Scholar 

  10. D. Kandel and E. Domany, General cluster Monte Carlo dynamics,Phys. Rev. B. 43:8539 (1991).

    Google Scholar 

  11. D. Kandel, E. Domany, and A. Brandt, Simulations without critical slowing down—Ising and 3-state Potts models.Phys. Rev. B 40:330 (1989).

    Google Scholar 

  12. D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, Jr., Simulations without critical slowing down,Phys. Rev. Lett. 60:1591 (1988).

    Google Scholar 

  13. X.-J. Li and A. D. Sokal, Rigorous lower bound on the dynamic critical exponent of some multilevel Swendsen-Wang algorithms,Phys. Rev. Lett. 67:1482 (1991).

    Google Scholar 

  14. G. Mack and A. Pordt, Convergent perturbation expansions for Euclidean quantum field theory,Commun. Math. Phys. 97:267 (1985); G. Mack, inNonperturbative Quantum Field Theory, G. t'Hooftet al.,eds. (Plenum Press, New York, 1988), p. 309.

    Google Scholar 

  15. D. Ron, Development of fast numerical solvers for problems in optimization and statistical mechanics, Ph.D. Thesis, Weizmann Institute of Science (1989).

  16. S. Shmulyian, Multilevel Monte Carlo algorithms for spin models, M.Sc. Thesis, Weizmann Institute of Science (1993).

  17. A. D. Sokal, How to beat critical slowing-down: 1990 update,Nucl. Phys. B (Proc. Suppl.) 20:55–67 (1991).

    Google Scholar 

  18. R. H. Swendsen and J. S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations,Phys. Rev. Lett. 58:86–88 (1987).

    Google Scholar 

  19. U. Wolff, Collective Monte Carlo updating for spin systems.Phys. Rev. Lett. 62:361–364 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, A., Galun, M. & Ron, D. Optimal multigrid algorithms for calculating thermodynamic limits. J Stat Phys 74, 313–348 (1994). https://doi.org/10.1007/BF02186816

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186816

Key Words

Navigation