Foundations of Physics Letters

, Volume 7, Issue 4, pp 333–341 | Cite as

An experiment to detect “empty” waves

  • S. Jeffers
  • J. Sloan


An experiment has been conducted to test the speculation that “empty” waves suffer attenuation in their propagation relative to waves which carry singularities. This speculation leads to the prediction that the contrast of interference fringes should decrease exponentially with free independent path length. A double-slit experiment has been carried out in which the distance between the slits and the observation plane has been varied over a wide range. High contrast interference fringes have been recorded and the contrast measured as a function of distance between the slits and the observation plane. No convincing evidence is found for attentuated “empty” waves.

Key words

quantum mechanics empty waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Feynman,Proceedings, Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley, 1951).Google Scholar
  2. 2.
    X. Y. Zou, L. J. Wang, and L. Mandel,Phys. Rev. Lett. 67, 3 (1991).CrossRefGoogle Scholar
  3. 3.
    G. Lochak,The Wave-Particle Dualism, S. Diner, D. Fargue, G. Lochak, and F. Selleri, eds. (Reidel, Dordrecht, 1984), pp. 1–25.Google Scholar
  4. 4.
    J.-P. Vigier,Found. Phys. 21 (2) (1991).Google Scholar
  5. 5.
    M. Bozic, and Z. Maric,Phys. Lett. A 158, 33–42 (1991).CrossRefGoogle Scholar
  6. 6.
    C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento 52B, 15 (1979).Google Scholar
  7. 7.
    C. Philippidis, D. Bohm, and R. D. Kaye,Nuovo Cimento 71B, 75 (1982).Google Scholar
  8. 8.
    F. Selleri,Found. Phys. 12 (11) (1982).Google Scholar
  9. 9.
    F. Selleri,Quantum Paradoxes and Physical Reality, A. van der Merwe, ed. (Kluwer Academic, Dordrecht, 1990), Chap. 4.Google Scholar
  10. 10.
    J. R. Croca, inThe Concept of Probability, E. I. Bitsakis and C. A. Nicolaides, eds. pp. 143–158 (Kluwer Academic, Dordrecht, 1989).Google Scholar
  11. 11.
    J. R. Croca,Found. Phys. 17, 971 (1987).CrossRefGoogle Scholar
  12. 12.
    J. R. Croca, A. Garruccio, and F. Selleri,Found. Phys. Lett. 1, 101 (1988).CrossRefGoogle Scholar
  13. 13.
    F. Selleri,Nouvo Saggiatore (Boll. Soc. It. Fisica) 4, 22 (1988).Google Scholar
  14. 14.
    Y. Koh and T. Sasaki, inMicrophysical Reality and Quantum Formalism, A. van der Merwe, F. Selleri, and G. Tarozzi, eds. (Kluwer Academic, Dordrecht, 1988).Google Scholar
  15. 15.
    P. Grangier, G. Roger, and A. Aspect, inNew Techniques and Ideas in Quantum Measurement Theory, D. Greenberger, ed., Ann. New York Acad. Sci.480, 98 (1986).Google Scholar
  16. 16.
    L. Janossy, and Z. Naray,Suppl. Nuovo Cimento 9, 588–598 (1958).Google Scholar
  17. 17.
    J. D. Franson, and K. A. Potocki,Phys. Rev. A 37, 2511 (1988).CrossRefGoogle Scholar
  18. 18.
    R. D. Prosser,Int. J. Theor. Phys. 15, 181 (1976).CrossRefGoogle Scholar
  19. 19.
    S. Jeffers, R. D. Prosser, G. Hunter, and J. Sloan, “Classical electromagnetic theory of diffraction and interference: Edge, single and double slit solutions,” inWaves and Particles in Light and Matter, A. Garuccio and A. van der Merwe, eds. (Plenum, New York, 1994).Google Scholar
  20. 20.
    X. Y. Zou, T. Grayson, L. J. Wang, and L. Mandel,Phys. Rev. Lett. 68 3667–3669 (1992).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • S. Jeffers
    • 1
  • J. Sloan
    • 1
  1. 1.Department of Physics and Astronomy Centre for Research in Earth and Space ScienceYork UniversityNorth YorkCanada

Personalised recommendations