Journal of Statistical Physics

, Volume 75, Issue 1–2, pp 253–295 | Cite as

The influence of external boundary conditions on the spherical model of a ferromagnet. I. Magnetization profiles

  • A. E. Patrick


The spherical model of a ferromagnet is investigated for various (external) boundary conditions. It is shown that, besides the well-known critical point, a second one can be produced by the boundary conditions. Although the main asymptotic of the free energy is analytic at the new critical point, theO(N1−2/d) asymptotic possesses a singularity here. A natural order parameter of the model has singularities at both critical points. The magnetization profile is studied for the whole range of the model's parameters and at different scales. It is shown that (in an appropriate regime) below the second critical temperature the magnetization profile freezes, that is, becomes temperature independent. Distributions of the single spin variables and some macroscopic observables (including normalized total spin) are studied for the whole temperature range including the critical points.

Key Words

Spherical model magnetization profile Gibbs states phase transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. B. Abraham, Solvable model with a roughening transition for a planar Ising ferromagnet,Phys. Rev. Lett. 44:1165–1168 (1980).CrossRefGoogle Scholar
  2. 2.
    D. B. Abraham, Surface structures and phase transitions—Exact results, inPhase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1986), Chapter 1.Google Scholar
  3. 3.
    D. B. Abraham and P. Reed, Interface profile of the Ising ferromagnet in two dimensions,Commun. Math. Phys. 49:35–46 (1976).CrossRefGoogle Scholar
  4. 4.
    D. B. Abraham and M. A. Robert, Phase separation in the spherical model,J. Phys. A: Math. Gen. 13:2229–2245 (1980).CrossRefGoogle Scholar
  5. 5.
    D. B. Abraham and M. E. Issigoni, Phase separation at the surface of the Ising ferromagnet,J. Phys. A: Math. Gen. 13:L89-L91 (1980).Google Scholar
  6. 6.
    H. Au-Yang, Thermodynamics of an anisotropic boundary of a two-dimensional Ising model,J. Math. Phys. 14:937–946 (1973).CrossRefGoogle Scholar
  7. 7.
    R. Z. Bariev, Correlation functions of the semi-infinite two-dimensional Ising model I. Local magnetization.Theor. Math. Phys. 40:623–636 (1979).Google Scholar
  8. 8.
    M. N. Barber and M. E. Fisher, Critical phenomena in systems of finite thickness I. The spherical model,Ann. Phys. 77:1–78 (1973).CrossRefGoogle Scholar
  9. 9.
    M. N. Barber, D. Jasnow, S. Singh, and R. A. Weiner, Critical behavior of the spherical model with enhanced surface exchange,J. Phys. C: Solid State Phys. 7:3491–3504 (1974).Google Scholar
  10. 10.
    T. H. Berlin and M. Kac, The spherical model of a ferromagnet,Phys. Rev. 86:821–835 (1952).CrossRefGoogle Scholar
  11. 11.
    R. S. Ellis and C. M. Newman, The statistics of the Curie-Weiss models,J. Stat. Phys. 19:149–161 (1978); R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, Berlin, 1985).CrossRefGoogle Scholar
  12. 12.
    M. E. Fisher and A. E. Ferdinand, Interfacial, boundary, and size effects at critical points,Phys. Rev. Lett. 19:169 (1967).CrossRefGoogle Scholar
  13. 13.
    M. E. Fisher and V. Privman, First-order transition in spherical models: Finite size scaling,Commun. Math. Phys. 103:527–548 (1986).CrossRefGoogle Scholar
  14. 14.
    J. Fröhlich and C.-E. Pfister, Semi-infinite Ising model. I. Thermodynamic functions and phase diagram in absence of magnetic field,Commun. Math. Phys. 109:493–523 (1987); Semi-infinite Ising model. II. The wetting and layering transition,Commun. Math. Phys. 112:51–74 (1987).CrossRefGoogle Scholar
  15. 15.
    A. Isihara, Effect of defects of spin interaction in a simple cubic lattice,Phys. Rev. 108:619–629 (1957).CrossRefGoogle Scholar
  16. 16.
    J. S. Joyce, Critical properties of the spherical model, inPhase Transition and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).Google Scholar
  17. 17.
    H. J. F. Knops, Infinite spin dimensionality limit for nontranslationally invariant interactions,J. Math. Phys. 14:1918–1920 (1973).CrossRefGoogle Scholar
  18. 18.
    J. S. Langer, A modified spherical model of a first-order phase transition,Phys. Rev. 137:A1531-A1547 (1965).CrossRefGoogle Scholar
  19. 19.
    M. Lax, Relation between canonical and microcanonical ensembles,Phys. Rev. 97:1419–1420 (1955).CrossRefGoogle Scholar
  20. 20.
    E. H. Lieb and C. J. Thompson, Phase transition in zero dimensions: A remark on the spherical model,J. Math. Phys. 10:1403–1406 (1969).CrossRefGoogle Scholar
  21. 21.
    B. McCoy and T. T. Wu, Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model. IV,Phys. Rev. 162:436–475 (1967).CrossRefGoogle Scholar
  22. 22.
    S. A. Molchanov and Ju. N. Sudarev, Gibbs states in the spherical model,Sov. Math. Dokl. 16:1254–1257 (1975).Google Scholar
  23. 23.
    A. Patrick, On phase separation in the spherical model of an ferromagnet: Quasiaverage approach,J. Stat. Phys. 72:665–701 (1993).CrossRefGoogle Scholar
  24. 24.
    S. Singh, D. Jasnow, and M. N. Barber, Critical behavior of the spherical model with enhanced surface exchange: Two spherical fields,J. Phys. C: Solid State Phys. 8:3408–3414 (1975).CrossRefGoogle Scholar
  25. 25.
    C. C. Yan and G. H. Wannier, Observation on the spherical model of a ferromagnet,J. Math. Phys. 6:1833–1838 (1965).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. E. Patrick
    • 1
  1. 1.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublinIreland

Personalised recommendations