Skip to main content
Log in

A study of two mass-consistent models: Problems and possible solutions

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Two existing mass-consistent models, COMPLEX and NOABL, were tested in three regions in the UK: Devon, the Northern Pennines and Shetland. In order to solve problems arising with both models, a number of modifications were made, leading to the development of a new model, MC-3. First, the entire wind field was scaled down (or up) by a certain percentage to make the wind predictions at the predictor stations as close to the observed values as possible. Second, modifications to the non-divergent process used in COMPLEX were made. Site roughness-length and anemometer height corrections were also made. The new model worked well in terms of mean wind speed predictions, and gave a significant improvement over the predictions of COMPLEX and NOABL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, R. G.: 1981,Mountain Weather and Climate, Methuen & Co. Ltd, New York.

    Google Scholar 

  • Bennett, M., Hamilton, P. M., and Moore, D. J.: 1983, ‘Estimation of Low-Level Winds from Upper-Air Data’,Proc. Int. Elec. Eng. 130, 517–522.

    Google Scholar 

  • Bhumralkar, C. M., Mancuso, R. L., and Ludwig, F. L.: 1980, ‘A Practical and Economic Method for Estimating Wind Characteristics at Potential Wind Energy Conversion Sites’,Solar Energy 25, 955–65.

    Article  Google Scholar 

  • Carruthers, D. J. and Choularton, T. W.: 1982, ‘Airflow over Hills of Moderate Slope’,Quart. J. Roy. Meteorol. Soc. 108, 603–624.

    Article  Google Scholar 

  • Endlich, R. M.: 1967, ‘An Iterative Method for Altering the Kinematic Properties of Wind Fields’,J. Appl. Meteorol. 2, 837–844.

    Article  Google Scholar 

  • Endlich, R. M.: 1984, ‘Wind Energy Estimates by Use of a Diagnostic Model’,Boundary-Layer Meteorol. 30, 375–386.

    Article  Google Scholar 

  • Endlich, R. M. and Clark, J. R.: 1963, ‘Objective Computation of Some Meteorological Quantities’,J. Appl. Meteorol. 2, 66–81.

    Article  Google Scholar 

  • Endlich, R. M. and Lee, J. D.: 1983,An Improved Diagnotic Model for Estimating Wind Energy, PNL4526, Pacific Northwest Laboratory, Richland, Washington.

    Google Scholar 

  • Guo, X.: 1989, An Assessment of Megoscale Wind Modelling Techniques in Complex Terrain, Ph.D. thesis, University of East Anglia, Norwich.

    Google Scholar 

  • Guo, X. and Palutikof, J. P.: 1988, ‘A Comparison of Two Simple Mesoscale Models to Predict Windspeeds in the Lower Boundary Layer’, in D. J. Milborrow (ed.),Wind Energy Conversion 1988, Mechanical Engineering Publications, London, 105–112.

    Google Scholar 

  • Jenkins, G. J., Mason, P. J., Moores, W. H., and Sykes, R. I.: 1981, ‘Measurements of the Flow Structure Around Ailsa Craig: A Steep, Three-Dimensional, Isolated Hill’,Quart. J. Roy. Meteorol. Soc. 107, 833–851.

    Article  Google Scholar 

  • Kasahara, A.: 1974, ‘Various Vertical Coordinate Systems Used for Numerical Weather Prediction’,Mon. Wea. Rev. 102, 509–522.

    Article  Google Scholar 

  • Lalas, D. P.: 1985, ‘Wind Energy Estimation and Siting in Complex Terrain’,Int. J. Solar Energy 3, 43–71.

    Google Scholar 

  • Mickle, R. E., Cook, N. J., Hoff, A. M., Jensen, N. O., Salmon, J. R., Taylor, P. A., Tetzlaff, G., and Teunissen, H. W.: 1988, ‘The Askervein Hill Project: Vertical Profiles of Wind and Turbulence’,Boundary-Layer Meteorol. 43, 143–169.

    Google Scholar 

  • Oke, T. R.: 1987,Boundary Layer Climates, Methuen & Co. Ltd, London.

    Google Scholar 

  • Orlanski, I.: 1975, ‘A Rational Subdivision of Scales for Atmospheric Processes’,Bull. Am. Meteorol. Soc. 5, 527–530.

    Google Scholar 

  • Phillips, G. T.: 1979,A Preliminary User's Guide for the NOABL Objective Analysis Code, DOE Contract No, AC06-77ET20230, Science Applications Inc., La Jolla, California.

    Google Scholar 

  • Physick, W. L.: 1988, ‘Review: Mesoscale Modelling in Complex Terrain’,Earth-Science Reviews 25, 199–235.

    Article  Google Scholar 

  • Salmon, J. R., Teunissen, H. W., Mickle, R. E., and Taylor, P. A.: 1988, ‘Askervein Hill Project: Field Observations, Wind-Tunnel Simulations and Numerical Model Predictions for Flow Over a Low Hill’,Boundary-Layer Meteorol. 43, 309–343.

    Article  Google Scholar 

  • Sasaki, Y.: 1970, ‘Numerical Variational Analysis Formulated Under the Constraints as Determined by Longwave Equations and a Low-Pass Filter’,Mon. Wea. Rev. 8, 884–898.

    Google Scholar 

  • Sherman, C. A.: 1978, ‘A Mass-Consistent Model for Wind Fields Over Complex Terrain’,J. Climate App. Meteorol. 17, 312–319.

    Article  Google Scholar 

  • Smith, F. B. and Hunt, R. D.: 1978, ‘Meteorological Aspects of the Transport of Pollution Over Long Distances’,Atmo. Environment 12, 461–477.

    Article  Google Scholar 

  • Stull, R. B.: 1988,An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Taylor, P. A. and Lee, R. J.: 1984, ‘Simple Guideline for Estimating Wind Speed Variations Due to Small Scale Topographic Features’,Climatological Bulletin 18, 3–32.

    Google Scholar 

  • Traci, R. M., Phillips, G. T., and Patnaik, P. C.: 1978,Developing a Site Selection Methodology for Wind Energy Converion Systems, DOE Contract No. AC06-77ET20280, Science Applications Inc., La Jolla, California.

    Google Scholar 

  • Wieringa, J.: 1986, ‘Roughness-Dependent Geographical Interpolation of Surface Wind Speed Averages’,Quart. J. Roy. Meteorol. Soc. 112, 867–889.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Palutikof, J.P. A study of two mass-consistent models: Problems and possible solutions. Boundary-Layer Meteorol 53, 303–332 (1990). https://doi.org/10.1007/BF02186092

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186092

Keywords

Navigation