Advertisement

Boundary-Layer Meteorology

, Volume 1, Issue 3, pp 300–320 | Cite as

Geophysical applications of heat and mass transfer in turbulent pipe flow

  • T. M. L. Wigley
  • C. Brown
Article

Abstract

The theory of heat and mass transfer in turbulent pipe flow is applied to a semi-infinite moist-walled cylindrical pipe to determine the longitudinal distributions of both temperature and moisture content as functions of external conditions, pipe radius and wall temperature, and flow velocity. Since many cave and mine passages approximate this model, the results are directly applicable to cave microclimate studies and mine ventilation problems. The results are found to agree well with previously published microclimate observations. The theory is also applicable to water flow in free-flow karst aquifers; specifically to the study of temperature variations and of solution kinetics under turbulent flow conditions.

Keywords

Mass Transfer Temperature Variation Flow Velocity Water Flow Flow Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, G.: 1953, ‘Temperatures et formation de glace dans les grottes du Salzburg (Autriche)’,Proc. 1st. Int. Congr. for Speleology, Paris, II, 321–324.Google Scholar
  2. Ashton, K.: 1967, ‘Cave Meteorology’ inThe University of Leeds Hydrological Survey Expedition to Jamaica 1963, Trans. Cave Res. Group of Great Britain 9, 47–51.Google Scholar
  3. Ashton, K.: 1968, ‘Cave Meteorology in the Tropics’,Proc. 4th Int. Congr. for Speleology, Ljubljana, III, 11–12.Google Scholar
  4. Cigna, A. A.: 1961, ‘Air Temperature Distributions near the Entrances of Caves’,Memoria V della Rassegna Speleologica Italiana, Como, 1–11.Google Scholar
  5. Cropley, J. B.: 1965, ‘Influence of Surface Conditions on Temperatures in Large Cave Systems’,Bull. Nat. Speleological Soc. 27, 1–10.Google Scholar
  6. De Saussure, H. B.: 1797,Voyages dans les Alpes, Tome III, 1404–1416.Google Scholar
  7. Eraso, A.: 1965, ‘Tentative Nomogram for Cave Climate Calculations’, inProblems of the Speleological Research (ed. by O. Stelcl), 175–185.Google Scholar
  8. Geiger, R.: 1966,The Climate near the Ground (revised edition), Harvard University Press, Cambridge, Mass.Google Scholar
  9. Kays, W. M.: 1966,Convective Heat and Mass Transfer, McGraw-Hill, N.Y.Google Scholar
  10. Lowry, D. C.: 1964, ‘The Development of Cocklebiddy Cave, Eucla Basin, Western Australia’,Helictite 3, 15–19.Google Scholar
  11. Lukin, V. S.: 1961, ‘Temperature Anomalies in the Pre-Ural Caves and Experience of their Quantitative Basing’,Die Höhle 12, p. 26.Google Scholar
  12. Lukin, V. S.: 1965, ‘Temperature Anomalies in Caves of the Approaches of the Urals and the Critical Analysis of Underground Cold Theories (in Russian)’,Peshchery 5, Perm., 164–172.Google Scholar
  13. McElroy, G. E.: 1966, ‘Mine Ventilation’, inMining Engineers Handbook I, 3rd. edition (ed. by R. Peele), John Wiley and Sons, N.Y.Google Scholar
  14. Moore, G. W. and Nicholas, G.: 1964,Speleology, D. C. Heath and Co., Boston.Google Scholar
  15. Poulson, T. L. and White, W. B.: 1969, ‘The Cave Environment’,Science 165, 971–981.Google Scholar
  16. Saar, R. V.: 1956, ‘Eishöhlen, Ein Meteorologisch-Geophysikalisches Phänomen’,Geografiska Annaler 38, 1–63.Google Scholar
  17. Spalding, D. B.: 1963,Convective Mass Transfer, McGraw-Hill, N.Y.Google Scholar
  18. Trimmel, H.: 1968,Höhlenkunde, Friedr. Vieweg und Sohn, Braunschweig.Google Scholar
  19. Trombe, F.: 1949, ‘Gouffres et cavernes du Haut-Comminges’, (transl.),Trans. Cave Res. Group of Great Britain 1, 9–30.Google Scholar
  20. Trombe, F.: 1952,Traité de Spéléologie, Payot, Paris.Google Scholar
  21. Vandel, A.: 1965,Biospeleology, Pergamon Press.Google Scholar
  22. Weyl, P. K.: 1958, ‘The Solution Kinetics of Calcite’,J. Geol. 66, 163–176.Google Scholar
  23. White, W. B.: 1969, ‘Conceptual Models for Carbonate Aquifers’,Groundwater 7, 15–21.Google Scholar

Copyright information

© D. Reidel Publishing Company 1971

Authors and Affiliations

  • T. M. L. Wigley
    • 1
  • C. Brown
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of GeographyUniversity of AlbertaEdmontonCanada

Personalised recommendations