Skip to main content
Log in

Chloroflexus-like organisms from marine and hypersaline environments: Distribution and diversity

  • Group 3: New Organisms, Ecology and Biochemistry
  • Regular Papers
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We report the presence of a diverse number ofChloroflexus-like organisms in intertidal marine and submerged hypersaline microbial mats using light, infrared fluorescence, and electron microscopy. The intertidal organisms appear morphologically very similar to thermophilicC. aurantiacus while the 2 hypersaline strains are larger and have a more complex ultrastructure composed of chlorosome-bearing internal membranes that appear to arise as invaginations of the cell membrane. By comparing spectroradiometry of microbial mat layers with microscopic observations, we have confirmed that theChloroflexus-like organisms are major constituents of the hypersaline microbial mat communities. In situ studies on mat layers dominated byChloroflexus-like organisms showed that sulfide-dependent photoautotrophic activity sustained by near infrared radiation prevailed. Autoradiographic analyses revealed that autotrophy was sustained in the filaments by 750 nm radiation. Three morphologically distinct strains are now maintained in mixed culture. One of these appears to be growing photoautotrophically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MCLO:

MarineChloroflexus-Like Organism

ppt:

parts per thousand (used to report salinities)

References

  • Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33: 75–89

    Google Scholar 

  • Bergstein-Ben Dan T (1988) Physiological aspects of high sulfide tolerance in a photosynthetic bacterium. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green Photosynthetic Bacteria, pp 295–303. Plenum Press, New York

    Google Scholar 

  • Castenholz RW, D'Amelio E, Farmer JD, Jørgensen BB, Palmisano AC, Pierson BK and Ward DM (1992) Modern mat-building microbial communities: Methods of investigation and supporting data. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 821–853. Cambridge University Press, Cambridge

    Google Scholar 

  • D'Amelio ED, Cohen Y and DesMarais DJ (1987) Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles ofMicrocoleus chthonoplastes in hypersaline cyanobacterial mats. Arch Microbiol 147: 213–220

    Google Scholar 

  • D'Amelio E, Cohen Y and DesMarais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 97–113. Am Soc Microbiol, Washington, DC

    Google Scholar 

  • DesMarais DJ, D'Amelio ED, Farmer JD, Jørgensen BB, Palmisano AC and Pierson BK (1992) Case study of a modern microbial mat-building community: The submerged cyanobacterial mats of Guerrero Negro, Baja California Sur, Mexico. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 324–333. Cambridge University Press, Cambridge

    Google Scholar 

  • Giovannoni SJ, Revsech NP, Ward DM and Castenholz RW (1987) Obligately phototrophicChloroflexus: Primary production in anaerobic hot spring microbial mats. Arch Microbiol 147: 80–87

    Google Scholar 

  • Gorlenko VM (1975) Characteristics of filamentous phototrophic bacteria from freshwater lakes. Mikrobiologiya (Engl transl) 44: 682–684

    Google Scholar 

  • Gorlenko VM (1988) Ecological niches of green sulfur gliding bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackerbrandt EE and Trüper HG (eds) Green Photosynthetic Bacteria, pp 257–267. Plenum Press, New York

    Google Scholar 

  • Gorlenko VM (1989a) Genus ‘Oscillochloris’. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey's Manual of Systematic Bacteriology, pp 1703–1706. Williams & Wilkins, Baltimore

    Google Scholar 

  • Gorlenko VM (1989b) GenusChloronema. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey's Manual of Systematic Bacteriology, pp 1706–1707. Williams & Wilkins, Baltimore

    Google Scholar 

  • Javor B (1989) Hypersaline Environments: Microbiology and Biogeochemistry. Springer-Verlag, New York

    Google Scholar 

  • Jørgensen BB (1989) Light penetration, absorption, and action spectra in cyanobacterial mats. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 123–137. Am Soc Microbiol, Washington, DC

    Google Scholar 

  • Keppen OI, Baulina OI and Kondratieva EN (1994)Oscillochloris trichoides neotype strain DG-6. Photosynth Res 41: 29–33 (this issue)

    Google Scholar 

  • Keppen OI, Baulina OI, Lysenko OY and Kondratieva EN (1993) New green bacterium belonging to family Chloroflexaceae. Mikrobiologiya (Engl transl) 62: 179–185

    Google Scholar 

  • Kühl M and Jørgensen BB (1992) Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector. Limnol Oceanogr 37: 1813–1823

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  • Mack EE and Pierson BK (1988) Preliminary characterization of a temperate marine member of the Chloroflexaceae. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 237–241 Plenum Press, New York

    Google Scholar 

  • Olson JM and Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Internat Rev Cytol 108: 209–248

    Google Scholar 

  • Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA and Woese CR (1987) The green non-sulfur bacteria: A deep branching in the eubacterial line of descent. System Appl Microbiol 9: 47–53

    Google Scholar 

  • Palmisano AC, Cronin SE, D'Amelio ED, Munoz E and DesMarais DJ (1989) Distribution and survival of lipophilic pigments in a laminated microbial mat community near Guerrero Negro, Mexico. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 138–152. Am Soc Microbiol, Washington, DC

    Google Scholar 

  • Pfennig N (1975) Phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43: 1–16

    Google Scholar 

  • Pfennig N and Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer K-H (eds) The Prokaryotes, 2nd edn, pp 3200–3221. Springer-Verlag, New York

    Google Scholar 

  • Pierson BK (1992) Introduction to modern mat-building microbial communities: A key to the interpretation of Proterozoic stromatolitic communities. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 247–251. Cambridge University Press, Cambridge

    Google Scholar 

  • Pierson BK (1994) The emergence, diversification, and role of photosynthetic eubacteria. In: Bengtson S (ed) Early Life on Earth, Nobel Symp No 84. Columbia University Press, New York (in press)

    Google Scholar 

  • Pierson BK and Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs,Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100: 5–24

    Google Scholar 

  • Pierson BK and Castenholz RW (1992) The family Chloroflexaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes, 2nd edn, pp 3754–3774. Springer Verlag, New York

    Google Scholar 

  • Pierson BK and Castenholz RW (1994) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht (in press)

    Google Scholar 

  • Pierson BK and Howard HM (1972) Detection of bacteriochlorophyll containing microorganisms by infrared fluorescence photomicrography. J Gen Microbiol 73: 359–363

    Google Scholar 

  • Pierson BK and Olson JM (1989) Evolution of photosynthesis in anoxygenic phototrophic prokaryotes. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 402–427. Am Soc Microbiol, Washington, DC

    Google Scholar 

  • Pierson BK, Giovannoni SJ and Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophylla. Appl Environ Microbiol 47: 576–584

    Google Scholar 

  • Pierson BK, Oesterle A and Murphy GL (1987) Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 45: 365–376

    Google Scholar 

  • Pierson BK, Sands VM and Frederick JL (1990) Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Appl Environ Microbiol 56: 2327–2340

    Google Scholar 

  • Schopf JW and Walter MR (1983) Archean microfossils: New evidence of ancient microbes. In: Schopf JW (ed) Earth's Earliest Biosphere, Its Origin and Evolution, pp 214–239. Princeton University Press, Princeton

    Google Scholar 

  • Sprague SG and Fuller RC (1991) The green phototrophic bacteria and Heliobacteria. In: Stolz JF (ed) Structure of Phototrophic Prokaryotes, pp 79–103. CRC Press, Boca Raton

    Google Scholar 

  • Stolz JF (1983) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. I. Methods of in situ study of the laminated sediments. Precambrian Res 20: 479–492

    Google Scholar 

  • Stolz JF (1984) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: II Transmission electron microscopy as a diagnostic tool in studying microbial communities in situ. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 23–28. Alan R Liss, New York

    Google Scholar 

  • Stolz JF (1990) Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. BioSystems 23: 345–357

    Google Scholar 

  • Stolz JF (1991) The ecology of phototrophic bacteria. In: Stolz JF (ed) Structure of Phototrophic Prokaryotes, pp 105–123. CRC Press, Boca Raton

    Google Scholar 

  • Strauss G and Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacteriumChloroflexus aurantiacus, the 3-hydroxypropionate cycle. FEBS Eur J Biochem 215: 633–643

    Google Scholar 

  • Venetskaya SL and Gerasimenko LM (1988) Electron-microscopic study of microorganisms in a halophilic cyanobacterial community. Mikrobiologiya (Engl transl) 57: 377–383

    Google Scholar 

  • Walsh MM and Lowe DR (1985) Filamentous microfossils from the 3,500-myr-old Onverwacht group, Barberton Mountain Land, South Africa. Nature (London) 314: 530–532

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: Evidence of the earth's earliest benthos. In: Schopf J (ed) Earth's Earliest Biosphere, Its Origin and Evolution, pp 187–213. Princeton University Press, Princeton

    Google Scholar 

  • Widdel F and Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer K-H (eds) The Prokaryotes, 2nd edn, pp 3352–3378. Springer-Verlag, New York

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierson, B.K., Valdez, D., Larsen, M. et al. Chloroflexus-like organisms from marine and hypersaline environments: Distribution and diversity. Photosynth Res 41, 35–52 (1994). https://doi.org/10.1007/BF02184144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02184144

Key words

Navigation