Journal of Statistical Physics

, Volume 83, Issue 3–4, pp 623–635 | Cite as

Computing invariant measures of piecewise convex transformations

Articles

Abstract

LetS:[0, 1]→[0,1] be a piecewise convex transformation satisfying some conditions which guarantee the existence of an absolutely continuous invariant probability measure. We prove the convergence of a class of Markov finite approximations for computing the invariant measure, using a compactness argument forL1-spaces.

Key Words

Invariant measure Frobenius-Perron operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Baladi, S. Isola, and B. Schmitt, Transfer operator for piecewise affine approximations of interval maps,Ann. Inst. H. Poincaré Theor. Phys. 62:251–266 (1995).Google Scholar
  2. 2.
    C. Chiu, Q. Du, and T. Y. Li, Error estimates of the Markov finite approximation of the Frobenius-Perron operator,Nonlinear Analysis TMA 19(4):291–308 (1992).Google Scholar
  3. 3.
    I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, New York, 1982).Google Scholar
  4. 4.
    J. Ding, Q. Du, and T. Y. Li, High order approximation of the Frobenius-Perron operator,Appl. Math. Comput. 53:151–171 (1993).Google Scholar
  5. 5.
    J. Ding and T. Y. Li, Markov finite approximation of Frobenius-Perron operator,Nonlinear Analysis TMA 17(8):759–772 (1991).Google Scholar
  6. 6.
    J. Ding and T. Y. Li, Projection solutions of the Frobenius-Perron operator equations,Int. J. Math. Math. Sci. 16(3):465–484 (1993).Google Scholar
  7. 7.
    N. Dunford and J. Schwartz,Linear Operators, Part I,General Theory (Interscience, New York, 1958).Google Scholar
  8. 8.
    F. Hunt and W. Miller, On the approximation of invariant measures,J. Stat. Phys. 66:535–548 (1992).Google Scholar
  9. 9.
    T. Kohda and K. Murao, Piecewise polynomial Galerkin approximation to invariant densities of one-dimensional difference equations,Electronics Commun. Japan 65-A(6):1–11 (1988).Google Scholar
  10. 10.
    A. Lasota and M. Mackey,Chaos, Fractals, and Noises, 2nd ed. (Springer-Verlag, New York, 1994).Google Scholar
  11. 11.
    A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,Trans. Am. Math. Soc. 186:481–488 (1973).Google Scholar
  12. 12.
    A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator,Trans. Am. Math. Soc. 273:375–384 (1982).Google Scholar
  13. 13.
    T. Y. Li, Finite approximation for the Frobenius-Perron operator, a solution to Ulam's conjecture,J. Approx. Theory 17:177–186 (1976).Google Scholar
  14. 14.
    W. de Melo and S. van Strien,One-Dimensional Dynamics (Springer-Verlag, New York, 1993).Google Scholar
  15. 15.
    W. M. Miller, Stability and approximation of invariant measures for a class of nonexpanding transformations,Nonlinear Analysis TMA (1995).Google Scholar
  16. 16.
    S. Ulam,A Collection of Mathematical Problems, (Interscience, New York, 1960).Google Scholar
  17. 17.
    P. Walters,An Introduction to Ergodic Theory (springer-Verlag, New York, 1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • J. Ding
    • 1
  1. 1.Department of MathematicsUniversity of Southern MississippiHattiesburg

Personalised recommendations