Advertisement

Journal of Statistical Physics

, Volume 83, Issue 3–4, pp 385–472 | Cite as

Hydrodynamics and fluctuations outside of local equilibrium: Driven diffusive systems

  • Gregory L. Eyink
  • Joel L. Lebowitz
  • Herbert Spohn
Articles

Abstract

We derive hydrodynamic equations for systems not in local thermodynamic equilibrium, that is, where the local stationary measures are “non-Gibbsian” and do not satisfy detailed balance with respect to the microscopic dynamics. As a main example we consider thedriven diffusive systems (DDS), such as electrical conductors in an applied field with diffusion of charge carriers. In such systems, the hydrodynamic description is provided by a nonlinear drift-diffusion equation, which we derive by a microscopic method ofnonequilibrium distributions. The formal derivation yields a Green-Kubo formula for the bulk diffusion matrix and microscopic prescriptions for the drift velocity and “nonequilibrium entropy” as functions of charge density. Properties of the hydrodynamic equations are established, including an “H-theorem” on increase of the thermodynamic potential, or “entropy”, describing approach to the homogeneous steady state. The results are shown to be consistent with the derivation of the linearized hydrodynamics for DDS by the Kadanoff-Martin correlation-function method and with rigorous results for particular models. We discuss also the internal noise in such systems, which we show to be governed by a generalizedfluctuation-dissipation relation (FDR), whose validity is not restricted to thermal equilibrium or to time-reversible systems. In the case of DDS, the FDR yields a version of a relation proposed some time ago by Price between the covariance matrix of electrical current noise and the bulk diffusion matrix of charge density. Our derivation of the hydrodynamic laws is in a form—the so-called “Onsager force-flux form” which allows us to exploit the FDR to construct the Langevin description of the fluctuations. In particular, we show that the probability of large fluctuations in the hydrodynamic histories is governed by a version of the Onsager “principle of least dissipation,” which estimates the probability of fluctuations in terms of the Ohmic dissipation required to produce them and provides a variational characterization of the most probable behavior as that associated to least (excess) dissipation. Finally, we consider the relation of longrange spatial correlations in the steady state of the DDS and the validity of ordinary hydrodynamic laws. We also discuss briefly the application of the general methods of this paper to other cases, such as reaction-diffusion systems or magnetohydrodynamics of plasmas.

Key Words

Hydrodynamics fluctuations nonequilibrium systems driven diffusive systems reciprocity relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Mori,Phys. Rev. 111:694 (1958);112:1829 (1958).Google Scholar
  2. 2.
    D. N. Zubarev,Nonequilibrium statistical Thermodynamics (Consultants Bureau, New York, 1974).Google Scholar
  3. 3.
    J. A. McLennan,Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey, 1989).Google Scholar
  4. 4.
    Y. G. Sinai,Selecta Math. Sov. 7:279 (1988).Google Scholar
  5. 5.
    G. Eyink, Nonequilibrium statistical distributions, unpublished.Google Scholar
  6. 6.
    G. L. Eyink, J. L. Lebowitz, and H. Spohn, Microscopic origin of hydrodynamic behavior: Entropy production and the steady-state, inChaos/Xaoc, Soviet-American Perspectives on Nonlinear Science, D. K. Campbell, ed. (American Institute of Physics, New York, 1990).Google Scholar
  7. 7.
    D. N. Zubarev and V. G. Morozov,Physica A 120:411 (1983).Google Scholar
  8. 8.
    R. Zwanzig,J. Chem. Phys. 33:1338 (1960).Google Scholar
  9. 9.
    A. Einstein,Ann. Phys. (Leipzig)22:180 (1907);33: 1275 (1910).Google Scholar
  10. 10.
    L. Onsager,Phys. Rev. 37:405 (1931);38:2265 (1931).Google Scholar
  11. 11.
    G. H. Wannier,Phys. Rev. 83:281 (1951);87:795 (1952).Google Scholar
  12. 12.
    G. H. Wannier,Bell. Syst. Techn. J. 32:170 (1953).Google Scholar
  13. 13.
    P. A. Markowich, C. A. Ringhofer, and C. Schmeisser,Semiconductor Equations (Springer, Vienna, 1990).Google Scholar
  14. 14.
    S. Katz, J. L. Lebowitz, and H. Spohn,J. Stat. Phys. 34:497 (1984).Google Scholar
  15. 15.
    B. Schmittmann and R. K. P. Zia, Statistical mechanics of driven diffusive systems, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1995).Google Scholar
  16. 16.
    R. Esposito, R. Marra, and H. T. Yau, Diffusive limit of asymmetric simple exclusion, inThe State of Matter, M. Aizenmann and H. Araki, eds (World Scientific, Singapore, 1994).Google Scholar
  17. 17.
    C. Landim, S. Olla, and H.-T. Yau, First-order correction for the hydrodynamic limit of asymmetric simple exclusion processes in dimensiond≥3, Preprint, Ecole Polytechnique, R.I. No. 307 (Novemeber 1994).Google Scholar
  18. 18.
    V. P. Kalashnikov,Phys. Lett. A 26:433 (1968).Google Scholar
  19. 19.
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Y. G. Sinai,Commun. Math. Phys. 154:569 (1993).Google Scholar
  20. 20.
    H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, New York, 1991).Google Scholar
  21. 21.
    P. J. Price, InFluctuation Phenomena in Solids, R. E. Burgess, ed. (Academic Press, New York, 1965), p. 355.Google Scholar
  22. 22.
    L. P. Kadanoff and P. C. Martin,Ann. Phys. (N.Y.) 24:419 (1963).Google Scholar
  23. 23.
    D. Forster,Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, Massachusetts, 1975).Google Scholar
  24. 24.
    R. Graham,Z. Phys. B 26:397 (1977).Google Scholar
  25. 25.
    R. Graham,Z. Phys. B 26:281 (1977).Google Scholar
  26. 26.
    H.-O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).Google Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media (Pergamon, London, 1960).Google Scholar
  28. 28.
    S. R. de Groot and P. Mazur,Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar
  29. 29.
    H. B. Callen,Thermodynamics (Wiley, New York, 1960).Google Scholar
  30. 30.
    P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn,Phys. Rev. A 42: 1954 (1990).Google Scholar
  31. 31.
    J. L. Lebowitz and R. H. Schonmann,Prob. Theory Related Fields 77:49 (1988).Google Scholar
  32. 32.
    R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985).Google Scholar
  33. 33.
    H. Künsch,Z. Wahrsch. Geb. 66:407 (1984).Google Scholar
  34. 34.
    G. L. Eyink, Entropy, statistical mechanics, and PDE's, unpublished.Google Scholar
  35. 35.
    H. van Beijeren,J. Stat. Phys. 35:399 (1984).Google Scholar
  36. 36.
    L. Onsager and S. Machlup,Phys. Rev. 91:1505 (1953).Google Scholar
  37. 37.
    G. L. Eyink,J. Stat. Phys. 61:533 (1990).Google Scholar
  38. 38.
    H. Haken,Synergetics (Springer-Verlag, Berlin, 1978).Google Scholar
  39. 39.
    J. W. Dufty and J. M. Rubi,Phys. Rev. A 36:222 (1987).Google Scholar
  40. 40.
    J. A. Krommes and G. Hu,Phys. Fluids B 5:3908 (1993).Google Scholar
  41. 41.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, London, 1959).Google Scholar
  42. 42.
    R. Stratonovich,Nonlinear Nonequilibrium Thermodynamics I (Springer, Berlin, 1992).Google Scholar
  43. 43.
    A. Einstein,Ann. Phys. (Leipzig)17:549 (1905).Google Scholar
  44. 44.
    B. Callen and T. A. Welton,Phys. Rev.,83:34 (1951).Google Scholar
  45. 45.
    H. Nyquist,Phys. Rev. 32:110 (1928).Google Scholar
  46. 46.
    R. F. Fox and G. E. Uhlenbeck,Phys. Fluids 13:1893 (1970).Google Scholar
  47. 47.
    K. Tomita and H. Tomita,Prog. Theor. Phys. 51:1731 (1974).Google Scholar
  48. 48.
    S. V. Gantsevich, V. L. Gurevich, and R. Katillius,Nuovo Cimento 2:1 (1979).Google Scholar
  49. 49.
    A.-M. S. Tremblay, InRecent Developments in Nonequilibrium Thermodynamics (Springer, Berlin, 1984).Google Scholar
  50. 50.
    C. Landim, S. Olla, and H. T. Yau, Some properties of the diffusion coefficient for asymmetric simple exclusion process, Ecole Polytechnique, R.I. No. 327 (June 1995).Google Scholar
  51. 51.
    M. Q. Zhang, J. S. Wang, J. L. Lebowitz, and J. L. Valles,J. Stat. Phys. 52: 1461 (1988).Google Scholar
  52. 52.
    R. K. P. Zia and B. Schmittmann, On singularities in the disordered phase of a driven diffusive system, preprint (1995).Google Scholar
  53. 53.
    A. Aharony,Phys. Rev. B 8:3363 (1973).Google Scholar
  54. 54.
    J. Skalyo, B. C. Frazer, and Shirane,Phys. Rev. B 1:278 (1970).Google Scholar
  55. 55.
    E. R. Speer, The two species, totally asymmetric simple exclusion process, inOn Three Levels, M. Fannes, C. Maes, and A. Verbeure, eds. (Plenum Press, New York, 1994). p. 91.Google Scholar
  56. 56.
    B. Derrida, S. Janowsky, J. L. Lebowitz, and E. Speer,Europhys. Lett. 22: 651 (1993);J. Stat. Phys. 73:813 (1993).Google Scholar
  57. 57.
    B. M. Law, R. W. Gammon, and J. V. Sengers,Phys. Rev. Lett. 60:1554 (1988).Google Scholar
  58. 58.
    V. G. Morozov,Physica A 126:461 (1984).Google Scholar
  59. 59.
    R. Graham and H. Haken,Z. Phys. 243:289 (1971);245: 141 (1971).Google Scholar
  60. 60.
    D. Gabrielli, G. Jona-Lasinio, and C. Landim, Onsager reciprocity relations without microscopic reversibility, preprint [mp_arc@ftp.ma.utexas.edu, #95-366].Google Scholar
  61. 61.
    C. Kipnis, S. Olla, and S. R. S. Varadhan,Commun. Pure Appl. Math. XLII:243 (1989).Google Scholar
  62. 62.
    R. Graham, InOrder and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, G. Nicolis, G. Dewel, and J. W. Turner, eds. (Wiley, New York, 1981).Google Scholar
  63. 63.
    R. Graham, InStochastic Processes in Nonequilibrium Systems, L. Garrido, P. Seglar, and P. J. Shephard, eds. (Springer, Berlin, 1978).Google Scholar
  64. 64.
    M. I. Freidlin and A. D. Wentzell,Random Perturbations of Dynamical Systems (Springer, New York, 1984).Google Scholar
  65. 65.
    D. A. Dawson and J. GärtnerStochastics 20:247 (1987).Google Scholar
  66. 66.
    Y. Oono,Prog. Theor. Phys. Suppl. 99:165 (1989).Google Scholar
  67. 67.
    E. B. Pitman and D. G. Schaeffer,Commun. Pure Appl. Math. 40:421 (1987).Google Scholar
  68. 68.
    A. De Masi, E. Presutti, and J. L. Lebowitz,J. Stat. Phys. 55:523 (1986).Google Scholar
  69. 69.
    G. Jona-Lasinio, C. Landim, and M. E. Vares,Prob. Theory Related Fields 97:339 (1993).Google Scholar
  70. 70.
    G. Jona-Lasinio,Ann. Inst. H. Poincaré 55(2):751 (1991).Google Scholar
  71. 71.
    R. Balescu,Transport Process in Plasmas (North-Holland, Amsterdam, 1988).Google Scholar
  72. 72.
    R. Balescu,Phys. Fluids B 3:564 (1991).Google Scholar
  73. 73.
    A. van Enter, R. Fernández, and A. Sokel,J. Stat. Phys. 72:879 (1993).Google Scholar
  74. 74.
    T. J. Liggett,Interacting Particle Systems (Springer, Berlin, 1985).Google Scholar
  75. 75.
    F. Rezakhanlou,Commun. Math. Phys. 140:417 (1991).Google Scholar
  76. 76.
    H. van Beijeren, R. Kutner, and H. Spohn,Phys. Rev. Lett. 54:2026 (1985).Google Scholar
  77. 77.
    J. Krug and H. Spohn, Kinetic roughening of growing surfaces inSolids Far From Equilibrium: Growth, Morphology and Defects, C. Godréche, ed. (Cambridge University Press, Cambridge, 1991).Google Scholar
  78. 78.
    Lin Xu, Diffusion limit for lattice gas with short-range interactions, Thesis, NYU (1993).Google Scholar
  79. 79.
    H. O. Georgii,Canonical Gibbs Measures (Springer-Verlag, Berlin, 1979).Google Scholar
  80. 80.
    R. H. Kraichnan,Phys. Rev. 113:1181 (1959).Google Scholar
  81. 81.
    G. Gallavotti and E. Verboven,Nuovo Cimento 28:274 (1975).Google Scholar
  82. 82.
    M. Aizenman et al.,Commun. Math. Phys. 53:209 (1977).Google Scholar
  83. 83.
    M. Aizenman et al.,Commun. Math. Phys. 48:1 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Gregory L. Eyink
    • 1
  • Joel L. Lebowitz
    • 2
  • Herbert Spohn
    • 3
  1. 1.Department of MathematicsUniversity of ArizonaTucson
  2. 2.Departments of Mathematics and PhysicsRutgers UniversityNew Brunswick
  3. 3.Theoretische PhysikLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations