Journal of Statistical Physics

, Volume 78, Issue 3–4, pp 1055–1066 | Cite as

Some remarks concerning stability for nonstationary quantum systems

  • César R. de Oliveira


The problem of characterizing stability and instability for general nonstationary quantum systems is investigated. Some characterizations are reported and some elementary properties of a topological characterization are established. Then, it is proven, by considering a simple example, that there are nonperiodic driven systems whose orbits are neither precompact nor leave on average any compact set. Autocorrelation measures are computed and the possible roles of the generalizes quasienergy operator and energy growth are briefly discussed.

Key Words

Quantum stability driven systems precompact orbits energy growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Enns and K. Veselic,Ann. Inst. Henri Poincaré A 39:159 (1983).Google Scholar
  2. 2.
    G. Casati and L. Molinari,Prog. Theor. Phys. Suppl. 98:287 (1989).Google Scholar
  3. 3.
    G. Casati and I. Guarneri,Phys. Rev. Lett. 50:640 (1983).Google Scholar
  4. 4.
    G. Casati, I. Guarneri, and D. L. Shepelyansky,Phys. Rev. Lett. 62:345 (1989).Google Scholar
  5. 5.
    M. Combescure,J. Stat. Phys. 62:779 (1991).Google Scholar
  6. 6.
    M. Combescure,Ann. Inst. Henri Poincaré 57:67 (1992).Google Scholar
  7. 7.
    T. Geisel,Phys. Rev. A 41:2889 (1990).Google Scholar
  8. 8.
    J. Bellissard, inStochastic Processes in Classical and Quantum Systems, S. Albeverio, G. Casati, and D. Merlini, eds. (Springer-Verlag, Berlin, 1986).Google Scholar
  9. 9.
    H. R. Jauslin and J. L. Lebowitz,Chaos 1:114 (1991).Google Scholar
  10. 10.
    L. Bunimovich, H. R. Jauslin, J. L. Lebowitz, A. Pellegrinotti, and P. Niebala,J. Stat. Phys. 62:793 (1991).Google Scholar
  11. 11.
    N. F. de Godoy and R. Graham,Europhys. Lett. 16:519 (1991).Google Scholar
  12. 12.
    D. L. Shepelyansky,Physica 8D:208 (1983).Google Scholar
  13. 13.
    J. M. Luck, H. Orland, and U. Smilansky,J. Stat. Phys. 53:551 (1988).Google Scholar
  14. 14.
    Y. Pomeau, B. Dorizzi, and B. Grammaticos,Phys. Rev. A 35:1714 (1987).Google Scholar
  15. 15.
    M. Samuelides, R. Fleckinger, L. Touzillier, and J. Bellissard,Europhys. Lett. 1: 203 (1986).Google Scholar
  16. 16.
    C.-A. Pillet,Commun. Math. Phys. 102:237 (1985);105:259 (1986).Google Scholar
  17. 17.
    I. Guarneri,Lett. Nuovo Cimento 40:171 (1984).Google Scholar
  18. 18.
    S. E. Cheremshantsev,Math. USSR Sbornik 65:531 (1990).Google Scholar
  19. 19.
    J.-P. Bellissard, inTrends and Developments in the Eighties, S. Albeverio and Ph. Blanchard, eds. (World Scientific, Singapore, 1985).Google Scholar
  20. 20.
    T. Hogg and H. Huberman,Phys. Rev. A 28:22 (1983).Google Scholar
  21. 21.
    K. Yajima,Commun. Math. Phys. 87:331 (1982).Google Scholar
  22. 22.
    C. R. de Oliveira,J. Math. Phys. 34:3878 (1993).Google Scholar
  23. 23.
    J. S. Howland,J. Funct. Anal. 74:52 (1987).Google Scholar
  24. 24.
    G. A. Hagedorn, M. Loss, and J. Slawny,J. Phys. A 19:521 (1986).Google Scholar
  25. 25.
    M. Queffélec,Substitution Dynamical Systems—Spectral Analysis (Springer-Verlag, Berlin 1987).Google Scholar
  26. 26.
    C. R. de Oliveira, On kicked systems modulated along the Thue-Morse Sequence,J. Phys. A., to appear.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • César R. de Oliveira
    • 1
  1. 1.Departamento de MatemáticaUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations