Advertisement

Journal of Statistical Physics

, Volume 78, Issue 3–4, pp 1039–1053 | Cite as

New equipartition results for normal mode energies of anharmonic chains

  • B. I. Henry
  • T. Szeredi
Articles

Abstract

The canonical and microcanonical distributions of energy among the normal modes of an anharmonic chain with nearest-neighbor interactions and free ends are examined. If the interparticle potential is an even function, then energy is distributed uniformly among the normal modes at all energy densities. If the interparticle potential is not an even function but includes quadratic, cubic, and quartic terms, then the energy sharing among the normal modes is also uniform in both the small- and large-energy density limits. At large energies, in this latter case the energy per normal mode scales as the square root of the energy density. Thus we find equipartition of energy among the normal modes of an anharmonic chain. The sum of the normal mode energies is less than the total energy of the chain.

Key Words

Equipartition of energy ergodic hypothesis anharmonic chains normal modes nonlinear lattice dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and K. Huang,Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954).Google Scholar
  2. 2.
    R. C. Tolman, A general theory of energy partition with applications to quantum theory,Phys. Rev. 11:261 (1918).Google Scholar
  3. 3.
    N. W. Ashcroft and N. D. Mermin,Solid State Physics (Saunders College, Philadelphia, 1976).Google Scholar
  4. 4.
    L. Boltzmann,Lectures on Gas Theory (University of California Press, Berkeley, 1964) [Vorlesungen uber Gastheorie P (Leipzig, Part I, 1896, Part II, 1898)].Google Scholar
  5. 5.
    E. Fermi, J. Pasta, and S. Ulam, Studies of nonlinear problems. I, inCollected Papers of E. Fermi, (University of Chicago Press, Chicago, 1965), Vol. II, p. 978.Google Scholar
  6. 6.
    J. Ford, The Fermi-Pasta-Ulam problem: Paradox turns discovery,Phys. Rev. 213:272 (1992).Google Scholar
  7. 7.
    M. Henon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments,Astronom. J. 69:73 (1964).Google Scholar
  8. 8.
    B. I. Henry and J. Grindlay, Reversible approach to statistical equilibrium in a nonlinear chain: An ensemble study,Physica D 28:49 (1987).Google Scholar
  9. 9.
    N. Saito, N. Ooyama, Y. Aizawa, and H. Hirooka, Computer experiments on ergodic problems in anharmonic lattice vibrations,Prog. Theor. Phys. Suppl. 45:209 (1970).Google Scholar
  10. 10.
    A. Jackson, Nonlinearity and irreversibility in lattice dynamics,Rocky Mount. J. Math. 8:127 (1978).Google Scholar
  11. 11.
    J. D. Murray,Asymptotic Analysis (Clarendon Press, Oxford, 1974).Google Scholar
  12. 12.
    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,Integrals and Series Vol. 5:Inverse Laplace Transforms (Gordon and Breach, New York, 1992).Google Scholar
  13. 13.
    P. Bocchieri, A. Scotti, B. Bearzi, and A. Loinger, Anharmonic chain with Lennard-Jones interaction,Phys. Rev. A 2:2013 (1970); R. Livi, M. Pettini,S. Ruffo, M. Sparpaglione, and A. Vulpiani, Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi-Pasta-Ulam model,Phys. Rev. A 31:1039 (1985); R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, Further results on the equipartition threshold in large nonlinear Hamiltonian systems,Phys. Rev. A 31:2740 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • B. I. Henry
    • 1
  • T. Szeredi
    • 2
  1. 1.Department of Applied MathematicsUniversity of New South WalesSydneyAustralia
  2. 2.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada

Personalised recommendations