Advertisement

Journal of Statistical Physics

, Volume 78, Issue 3–4, pp 1027–1038 | Cite as

Relaxation functions in dipolar materials

  • A. Weron
  • K. Weron
  • W. A. Woyczynski
Articles

Abstract

We compare two simple “cartoons” of relaxation processes in dipolar materials: the “first passage” relaxation function introduced by K. Weron (1991) and the “average” relaxation function expressing the proportion of dipoles which did not change their imposed aligned orientation up to a certain time, the latter providing a description closer to what is experimentally measured. In some cases, the two relaxation functions are proved to coincide.

Key Words

Dielectric relaxation function Kohlrausch-Williams-Watts response one-sided Lévy stable distribution order statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Scher, M. F. Shlesinger, and J. T. Bendler,Phys. Today 44:26 (1991).Google Scholar
  2. 2.
    J. Klafter and M. F. Shlesinger,Proc. Natl. Acad. Sci. USA 83:848 (1986).Google Scholar
  3. 3.
    R. Rammal,J. Phys. (Paris)46:1857 (1985).Google Scholar
  4. 4.
    M. F. Shlesinger and E. W. Montroll,Proc. Natl. Acad. Sci. USA 81:1280 (1984).Google Scholar
  5. 5.
    K. Weron,J. Phys.: Condens. Matter 3:9151 (1991).Google Scholar
  6. 6.
    K. Weron,J. Phys.: Condens. Matter 4:10507 (1992).Google Scholar
  7. 7.
    K. Weron and A. Jurlewicz,J. Phys. A.: Math. Gen. 26:395 (1993).Google Scholar
  8. 8.
    A. Jurlewicz and K. Weron,J. Stat. Phys. 73:69 (1993).Google Scholar
  9. 9.
    R. Friedberg and J. M. Luttinger,Phys. Rev. B 12:4460 (1975).Google Scholar
  10. 10.
    P. Grassberger and I. Procaccia,J. Chem. Phys. 77:6281 (1982).Google Scholar
  11. 11.
    J. C. Rasaiah and Jianjun Zhu,J. Chem. Phys. 93:5768 (1990).Google Scholar
  12. 12.
    M. D. Donsker and S. R. S. Varadhan,Commun. Pure Appl. Math. 28:525 (1975);32:721 (1979).Google Scholar
  13. 13.
    L. A. Dissado and R. M. Hill,Proc. Roy. Soc. A. 390:131 (1983).Google Scholar
  14. 14.
    A. K. Jonscher,Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).Google Scholar
  15. 15.
    C. J. Böttcher and P. Bordewijk,Theory of Electronic Polarisation, Vol. 2 (Elsevier, Amsterdam, 1978).Google Scholar
  16. 16.
    P. Debye,Z. Phys. 13:97 (1912).Google Scholar
  17. 17.
    R. G. Palmer, D. Stein, E. S. Abrahams, and P. W. Anderson,Phys. Rev. Lett. 53: 958 (1984).Google Scholar
  18. 18.
    L. A. Dissado and R. M. Hill,Chem. Phys. 111:193 (1987).Google Scholar
  19. 19.
    E. W. Montroll and J. T. Bendler,J. Stat. Phys. 34:639 (1984).Google Scholar
  20. 20.
    B. V. Gnedenko and A. N. Kolmogorov,Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Reading, Massachusetts, 1954).Google Scholar
  21. 21.
    A. Janicki and A. Weron,Simulation and Chaotic Behavior of α-Stable Stochastic Processes (Marcel Dekker, New York, 1994).Google Scholar
  22. 22.
    J. Galambos,The Asymptotic Theory of Extreme Order Statistics (Wiley, New York, 1978).Google Scholar
  23. 23.
    M. R. Leadbetter, G. Lindgren, and H. Rootzen,Extremes and Related Properties of Random Sequences and Processes (Springer-Verlag, New York, 1983).Google Scholar
  24. 24.
    R. V. Hogg and S. A. Klugman,Loss Distributions (Wiley, New York, 1984).Google Scholar
  25. 25.
    A. Plonka,Ann. Rep. Prog. Chem. 89:37 (1992).Google Scholar
  26. 26.
    A. Blumen,Nuovo Cimento B 63:50 (1981).Google Scholar
  27. 27.
    G. Zumofen, A. Blumen, and J. Klafter,J. Chem. Phys. 83:3298 (1995).Google Scholar
  28. 28.
    G. A. Niklasson,J. Appl. Phys. 62:R1 (1987).Google Scholar
  29. 29.
    G. A. Niklasson,J. Phys.: Condens. Matter 5:4233 (1983).Google Scholar
  30. 30.
    A. Jonscher, Private communication (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Weron
    • 1
  • K. Weron
    • 2
  • W. A. Woyczynski
    • 3
  1. 1.Hugo Steinhaus Center for Stochastic MethodsTechnical University of WrocławWroclawPoland
  2. 2.Institute of PhysicsTechnical University of WrocławWroclawPoland
  3. 3.Center for Stochastic and Chaotic Processes in Science and TechnologyCase Western Reserve UniversityCleveland

Personalised recommendations