Journal of Statistical Physics

, Volume 78, Issue 3–4, pp 963–970 | Cite as

Anisotropic voter model

  • M. A. Santos
  • S. Teixeira
Articles

Abstract

A majority vote model subject to anisotropic voting rules is studied in two dimensions using a first-order mean-field approximation and Monte Carlo simulations. The critical behavior is consistent with the 2D Ising universality class.

Key Words

Stochastic spin systems majority vote models anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).Google Scholar
  2. 2.
    L. Gray, InParticle Systems, Random Media and Large Deviations, R. Durret, ed. (American Physical Society, New York, 1985).Google Scholar
  3. 3.
    G. Grinstein, C. Jayaprakash, and Yu He,Phys. Rev. Lett. 55:2527 (1985).Google Scholar
  4. 4.
    M. J. de Oliveira,J. Stat. Phys. 66:273 (1992).Google Scholar
  5. 5.
    C. H. Bennett and G. Grinstein,Phys. Rev. Lett. 55:657 (1985).Google Scholar
  6. 6.
    J. M. Gonzaléz-Miranda, P. L. Garrido, J. Marro, and J. Lebowitz,Phys. Rev. Lett. 59:1934 (1987).Google Scholar
  7. 7.
    H. W. J. Blöte, J. R. Heringa, A. Hoogland, and R. K. P. Zia,J. Phys. A: Math. Gen. 23:3799 (1990).Google Scholar
  8. 8.
    M. J. Oliveira, J. F. F. Mendes, and M. A. Santos,J. Phys. A: Math. Gen. 26:2317 (1993).Google Scholar
  9. 9.
    M. C. Marques,J. Phys. A: Math. Gen. 26:1559 (1993).Google Scholar
  10. 10.
    M. C. Marques,J. Phys. A: Math. Gen. 22:4493 (1989).Google Scholar
  11. 11.
    M. C. Marques,Phys. Lett. A 145:379 (1990).Google Scholar
  12. 12.
    T. Tomé, M. J. de Oliveira, and M. A. Santos,J. Phys. A: Math. Gen. 24:3677 (1991).Google Scholar
  13. 13.
    A. Bruce,J. Phys. A: Math. Gen. 18:L873 (1985).Google Scholar
  14. 14.
    T. Aukrust, D. A. Browne, and I. Webman,Phys. Rev. A 41:5294 (1990).Google Scholar
  15. 15.
    K. Binder, InFinite Size Scaling and Numerical Simulation of Statistical Systems, V. Privman, ed. (World Scientific, Singapore, 1990).Google Scholar
  16. 16.
    H. W. J. Blöte, J. R. Heringa, A. Hoogland, and R. K. P. Zia,Int. J. Mod. Phys. B 5:685 (1990).Google Scholar
  17. 17.
    E. Domany,Phys. Rev. Lett. 52:871 (1984).Google Scholar
  18. 18.
    A. Georges and P. Le Doussal,J. Stat. Phys. 54:1011 (1989).Google Scholar
  19. 19.
    P. Tamayo, F. J. Alexander, and R. Gupta, A study of two-temperature nonequilibrium Ising models: Critical behaviour and universality, cond-mat/9407045 preprint.Google Scholar
  20. 20.
    P. L. Garrido, J. Marro, and J. M. Gonzalez-Miranda,Phys. Rev. A 40:5802 (1989).Google Scholar
  21. 21.
    I. Kanter and D. S. Fisher,Phys. Rev. A 40:5327 (1989).Google Scholar
  22. 22.
    R. B. Stinchcombe, InPhase Transitions and Critical Phenomena, Vol. 7, C. D. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • M. A. Santos
    • 1
  • S. Teixeira
    • 1
    • 2
  1. 1.Departamento de Física da Universidade do PortoPortoPortugal
  2. 2.Departamento de Engenharia Civil, Faculdade de Engenharia daUniversidade do PortoPortoPortugal

Personalised recommendations