Journal of Statistical Physics

, Volume 78, Issue 3–4, pp 799–813 | Cite as

A Monte Carlo method for estimating the correlation exponent

  • T. Mikosch
  • Qiang Wang


We propose a Monte Carlo method for estimating the correlation exponent of a stationary ergodic sequence. The estimator can be considered as a bootstrap version of the classical Hill estimator. A simulation study shows that the method yields reasonable estimates.

Key Words

Correlation exponent correlation dimension Hill estimator Monte Carlo method bootstrap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Beirlant and J. K. Teugels, The asymptotic behavior of Hill's estimator,Theor. Prob. Appl. 13:463–469 (1986).Google Scholar
  2. 2.
    N. H. Bingham, C. M. Goldie, and J. K. Teugels,Regular Variation (Cambridge University Press, Cambridge, 1987).Google Scholar
  3. 3.
    C. D. Cutler, Some results on the behaviour and estimation of the fractal dimensions of distributions on attractors,J. Stat. Phys. 62:651–708 (1991).Google Scholar
  4. 4.
    S. Csörgö, P. Deheuvels, and D. Mason, Kernel estimates of the tail index of a distribution,Ann. Stat. 13:1050–1077 (1985).Google Scholar
  5. 5.
    M. Denker and G. Keller, Regorous statistical procedures for data from dybnamical systems,J. Stat. Phys. 44:67–94 (1986).Google Scholar
  6. 6.
    P. Deheuvels, E. Haeusler, and D. M. Mason, Almost sure convergence of the Hill estimator,Math. Proc. Camb. Phil. Soc. 104:371–381 (1988).Google Scholar
  7. 7.
    B. Efron, Bootstrap methods: Another look at the jackknife,Ann. Stat. 7:1–26 (1979).Google Scholar
  8. 8.
    P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors,Physica D 9:208 (1983).Google Scholar
  9. 9.
    P. Grassberger, Finite sample correlations to entropy and dimension estimates,Phys. Lett. A:369–373 (1988).Google Scholar
  10. 10.
    P. Hall, On simple estimates of an exponent ofregular variation,J. R. Stat. Soc. B 44:37–42 (1982).Google Scholar
  11. 11.
    D. Harte, Dimension estimates of earthquake epicentres and hypocentres, Technical Report, Victoria University Wellington (1994), in preparation.Google Scholar
  12. 12.
    D. Harte and D. Vere-Jones, Sources of bias affecting dimension estimates, Technical Report, Victoria University Wellington (1994), in preparation.Google Scholar
  13. 13.
    E. Häusler and J. L. Teugels, On asymptotic normality of Hill's estimator for the exponent of regular variation,Ann. Stat. 13:743–756 (1985).Google Scholar
  14. 14.
    B. M. Hill, A simple general approach to inference about the tail of a distribution,Ann. Stat. 3:1163–1174 (1975).Google Scholar
  15. 15.
    T. Hsing, On tail index estimation using dependent data,Ann. Stat. 19:1547–1569 (1991).Google Scholar
  16. 16.
    D. Mason, Laws of large numbers for sums of extreme values,Ann. Prob. 10:754–764. (1982).Google Scholar
  17. 17.
    T. Mikosch and Q. Wang, Some results on estimating Renýi dimensions, Technical Report, Victoria University Wellington (1993).Google Scholar
  18. 18.
    R. L. Smith, Estimating dimension in noisy chaotic time series,J. R. Stat. Soc. B 54:329–351 (1992).Google Scholar
  19. 19.
    F. Takens, On the numerical determination of the dimension of an attractor, inDynamical Systems and Turbulence (Springer, Berlin, 1985), pp. 99–106.Google Scholar
  20. 20.
    D. Vere-Jones, R. B. Davies, D. Harte, T. Mikosch, and Q. Wang, Problems and examples in the estimation of fractal dimension from meteorological and earthquake data, inProceedings of the International Conference on Applications of Time Series Analysis in Astronomy and Meterology (Padua, 1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • T. Mikosch
    • 1
  • Qiang Wang
    • 2
  1. 1.Faculty of Mathematics and PhysicsUniveristy of GroningenGroningenThe Netherlands
  2. 2.Hydrometeorological Processes DivisionNational Hydrology InstituteSaskatoonCanada

Personalised recommendations