Advertisement

Journal of Statistical Physics

, Volume 78, Issue 3–4, pp 759–798 | Cite as

Application of the multicanonical multigrid Monte Carlo method to the two-dimensional φ4: Autocorrelations and interface tension: Autocorrelations and interface tension

  • Wolfhard Janke
  • Tilman Sauer
Articles

Abstract

We discuss the recently proposed multicanonical multigrid Monte Carlo method and apply it to the scalarφ4 on a square lattice. To investigate the peformance of the new algorithm at the field-driven first-order phase transitions between the two ordered phases we carefully analyze the autocorrelations of the Monte Carlo process. Compared with standard mlticanonical simulations a real-time improvement of about one order of magnitude is established. The interface tension between the two ordered phases is extracted from highstatistics histograms of the magnetization applying histogram reweighting techniques.

Key Words

Lattice field theory first-order phase transitions interfaces Monte Carlo simulations multicanonical algorithm multigrid techniques autocorrelations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Gunton, M. S. Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983).Google Scholar
  2. 2.
    H. J. Herrmann, W. Janke, and F. Karsch, eds.,Dynamics of First Order Phase Transitions (World Scientific, Singapore, 1992).Google Scholar
  3. 3.
    B. A. Berg and T. Neuhaus,Phys. Lett. B 267:649 (1991);Phys. Rev. Lett. 68:9 (1992).Google Scholar
  4. 4.
    W. Janke, B. A. Berg, and M. Katoot,Nucl. Phys. B 382:649 (1992).Google Scholar
  5. 5.
    B. A. Berg, U. Hansmann, and T. Neuhaus,Phys. Rev. B 47:497 (1993);Z. Phys. B 90:229 (1993); U. Hansmann, B. A. Berg, and T. Neuhaus, inDynamics of First Order Phase Transitions, H. J. Herrmann, W. Janke, and F. Karsch, eds. (World Scientific, Singapore, 1992).Google Scholar
  6. 6.
    A. Billoire, T. Neuhaus, and B. A. Berg,Nucl. Phys. B 396:779 (1993);413:795 (1994).Google Scholar
  7. 7.
    B. Grossmann and M. L. Laursen, inDynamics of First Order Phase Transitions, H. J. Herrmann, W. Janke, and F. Karsch, eds. (World Scientific, Singapore, 1992),Nucl. Phys. B 408:637 (1993); B. Grossmann, M. L. Laursen, T. Trappenberg, and U.-J. Wiese,Phys. Lett. B 293:175 (1993).Google Scholar
  8. 8.
    B. A. Berg, inDynamics of First Order Phase Transitions, H. J. Herrmann, W. Janke, and F. Karsch, eds. (World Scientific, Singapore, 1992).Google Scholar
  9. 9.
    W. Janke, inDynamics of First Order Phase Transitions, H. J. Herrmann, W. Janke, and F. Karsch, eds. (World Scientific, Singapore, 1992).Google Scholar
  10. 10.
    C. F. Baillie,Int. J. Mod. Phys. C 1:91, (1990); R. H. Swendsen, J.-S. Wang, and A. M. Ferrenberg, New Monte Carlo methods for improved efficiency of computer simulations in statistical mechanics, inThe Monte Carlo Method in Condensed Matter Physics, K. Binder, ed. (Springer, Berlin, 1992), p. 75; A. D. Sokal, Bosonic algorithms, inQuantum Fields on the Computer, M. Creutz, ed. (World Scientific, Singapore, 1992), p. 211; A. D. Kennedy,Nucl. Phys. B (Proc. Suppl.) 30:96 (1993).Google Scholar
  11. 11.
    J. Goodman and A. D. Sokal,Phys. Rev. Lett. 56:1015 (1986);Phys. Rev. D 40:2035 (1989).Google Scholar
  12. 12.
    G. Mack, inNonperturbative Quantum Field Theory, G. t'Hooft et al., eds. (Plenum Press, New York, 1988).; G. Mack and S. Meyer,Nucl. Phys. B (Proc. Suppl.) 17:293 (1990).Google Scholar
  13. 13.
    D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, Jr.,Phys. Rev. Lett. 60:1591 (1988); D. Kandel, E. Domany, and A. Brandt,Phys. Rev. B 40:330 (1989).Google Scholar
  14. 14.
    R. G. Edwards, J. Goodman, and A. D. Sokal.Nucl. Phys. B 354:289 (1991); A. Hulsebos, J. Smit, and J. C. Vink,Nucl. Phys. B 356:775 (1991); R. G. Edwards, S. J. Ferreira, J. Goodman, and A. D. Sokal,Nucl. Phys. B 380:621 (1992); M. L. Laursen and J. C. Vink,Nucl. Phys. B 401:745 (1993).Google Scholar
  15. 15.
    W. Janke and T. Sauer,Chem. Phys. Lett. 201:499 (1993).Google Scholar
  16. 16.
    W. Janke and T. Sauer, inPath Integrals from meV to MeV, H. Grabert etal., eds. (World Scientific, Singapore, 1993) p. 17.Google Scholar
  17. 17.
    W. Janke and T. Sauer,Phys. Rev. E 49:3475 (1994).Google Scholar
  18. 18.
    K. Rummukainen,Nucl. Phys. B 390:621 (1993).Google Scholar
  19. 19.
    W. Kerler and A. Weber,Phys. Rev. B 47:11563 (1993).Google Scholar
  20. 20.
    A. Milchev, D. W. Heermann, and K. Binder,J. Stat. Phys. 44:749 (1986).Google Scholar
  21. 21.
    R. C. Brower and P. Tamayo,Phys. Rev. Lett. 62:1087 (1989).Google Scholar
  22. 22.
    R. Toral and A. Chakrabarti,Phys. Rev. B 42:2445 (1990).Google Scholar
  23. 23.
    B. Mehlig and B. M. Forrest,Z. Phys. 89:89 (1992); B. Mehlig, A. L. C. Ferreira, and D. W. Heermann,Phys. Lett. B 291:151 (1992).Google Scholar
  24. 24.
    K. Binder,Z. Phys. B 43:119 (1981);Phys. Rev. A 25:1699 (1982).Google Scholar
  25. 25.
    N. Madras and A. D. Sokal,J. Stat. Phys. 50:109 (1988).Google Scholar
  26. 26.
    G. M. Torrie and J. P. Valleau,Chem. Phys. Lett. 28:578 (1974);J. Comp. Phys. 23:187 (1977); I. S. Graham and J. P. Valleau,J. Phys. Chem. 94:7894 (1990); J. P. Valleau,J. Comp. Phys. 96:193 (1991).Google Scholar
  27. 27.
    W. Hackbusch,Multi-Grid Methods and Applications (Springer, Berlin, 1985).Google Scholar
  28. 28.
    S. F. McCormick, ed.,Multigrid Methods, Theory, Applications, and Supercomputing (Dekker, New York, 1988).Google Scholar
  29. 29.
    A. D. Sokal, New York University preprint NYU-TH-93/07/02.Google Scholar
  30. 30.
    T. Neuhaus,Nucl. Phys. B (Proc. Suppl.) 34:667 (1994).Google Scholar
  31. 31.
    M. Grabenstein and K. Pinn,J. Stat. Phys. 71:607 (1993).Google Scholar
  32. 32.
    R. G. Miller,Biometrika 61:1 (1974); B. Efron,The Jackknife, The Bootsrap and other Resampling Plants (SIAM, Philadelphia, 1982).Google Scholar
  33. 33.
    A. Billoire, R., Lacaze, A. Morel, S. Gupta, A. Irbäck, and B. Peterson,Nucl. Phys. B 358:231 (1991); W. Janke, unpublished notes.Google Scholar
  34. 34.
    A. M. Ferrenberg and R. H. Swendsen,Phys. Rev. Lett. 61:2635 (1988);63:1195 (1989); Erratum,63:1658 (1989).Google Scholar
  35. 35.
    U.-J. Wiese, Bern preprint BUTP-92/37.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Wolfhard Janke
    • 1
  • Tilman Sauer
    • 2
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Institut für Theoretische PhysikFreie Universität BerlinBerlinGermany

Personalised recommendations