Advertisement

Journal of Statistical Physics

, Volume 78, Issue 3–4, pp 701–730 | Cite as

Critical exponents from nonlinear functional equations for partially directed cluster models

  • T. Prellberg
  • R. Brak
Articles

Abstract

We present a method for the derivation of the generating function and computation of critical exponents for several cluster models (staircase, bar-graph, and directed column-convex polygons, as well as partially directed self-avoiding walks), starting with nonlinear functional equations for the generating function. By linearizing these equations, we first give a derivation of the generating functions. The nonlinear equations are further used to compute the thermodynamic critical exponents via a formal perturbation ansatz. Alternatively, taking the continuum limit leads to nonlinear differential equations, from which one can extract the scaling function. We find that all the above models are in the same universality class with exponents γ u =-1/2, γ i =-1/3, and ϕ=2/3. All models have as their scaling function the logarithmic derivative of the Airy function.

Key Words

Functional equations cluster models polygons critical exponents scaling functions nonlinear differential equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Delest,J. Math. Chem.,8:3–18 (1991).Google Scholar
  2. 2.
    M. Delest and G. Viennot,Theor. Comp. Sci.,34:169–2068 (1984).Google Scholar
  3. 3.
    M. P. Schützenberger, InProceedings Symposium on Mathematical Theory of Automata, Lecture Notes in Computer Science (Polytechnic Institute of Brooklyn, Brooklyn, New York, 1962),pp. 246–264.Google Scholar
  4. 4.
    H. N. V. Temperley,Proc. Camb. Phil. Soc. 48:638 (1952).Google Scholar
  5. 5.
    R. Brak and A. J. Guttmann,J. Phys. A. 23:4581 (1990).Google Scholar
  6. 6.
    R. Brak, A. Guttmann, and S. Whittington,J. Phys. A 25:2437 (1992).Google Scholar
  7. 7.
    A. L. Owczarek and T. Prellberg,J. Stat. Phys. 70:1175–1194 (1993).Google Scholar
  8. 8.
    A. L. Owczarek, T. Prellberg, and R. Brak,J. Stat. Phys. 72:737–772 (1993).Google Scholar
  9. 9.
    P. M. Binder, A. L. Owczarek, A. R. Veal, and J. M. Yeomans,J. Phys. A 23:L975 (1990).Google Scholar
  10. 10.
    F. H. Jackson,Trans. R. Soc. Edin. 41:1–28 (1903).Google Scholar
  11. 11.
    M. Rahman,J. Math. Anal. Appl. 125:58–71 (1987).Google Scholar
  12. 12.
    G. Gasper and M. Rahman,Basic Hypergeometric Series (Cambridge University Press, Cambridge, 1990).Google Scholar
  13. 13.
    M. P. Delest and J. M. Fedou, InProceedings Workshop on Attribute Grammars, P. Deransart and M. Jourdan, eds. (1990), pp. 46–60.Google Scholar
  14. 14.
    R. Brak, A. L. Owczarek, and T. Prellberg,J. Phys. A. 26:4565 (1993).Google Scholar
  15. 15.
    E. Hille,Functional Analysis and Semi-Groups (American Mathematical Society, New York, 1948).Google Scholar
  16. 16.
    R. Zwanzig and J. I. Lauritzen, Jr.,J. Chem. Phys. 48:3351 (1968).Google Scholar
  17. 17.
    H. T. Davis,Introduction to Non-linear Differential and Integral Equations (Dover, New York, 1962).Google Scholar
  18. 18.
    R. Brak, A. L. Owczarek, and T. Prellberg,J. Stat. Phys. 76:1101–1128 (1994).Google Scholar
  19. 19.
    C. M. Bender and S. A. Orszag,Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).Google Scholar
  20. 20.
    J. M. Fédou and I. Dutour, University of Bordeaux preprint (1994).Google Scholar
  21. 21.
    M. P. Delest and S. Dulucq,Croat. Chem. Acta 66:59–80 (1993).Google Scholar
  22. 22.
    M. Bousquet-Melou, University of Bordeaux preprint (1993).Google Scholar
  23. 23.
    X. G. Viennot, Private communication.Google Scholar
  24. 24.
    M. Bousquet-Melou and J. M. Fédou, University of Bordeaux preprint (1994).Google Scholar
  25. 25.
    F. W. J. Olver,Asymptotics and Special Functions (Academic Press, London, 1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • T. Prellberg
    • 1
  • R. Brak
    • 1
  1. 1.Department of MathematicsUniversity of MelbourneParkvilleAustralia

Personalised recommendations