Journal of Statistical Physics

, Volume 83, Issue 1–2, pp 259–274 | Cite as

Hard chaos and adiabatic quantization: The wedge billiard

  • T. Szeredi


We present a study of a series of eigenstates occurring in the wedge billiard which may be quantized about tori by sejiclassical adiabatic quantization, even though the underlying classical system exhibits hard chaos and strictly possesses no tori. We also show that adiabatic eigenstates should be common in many chaotic systems, especially among the lower eigenstates, and present a heuristic argument as to why this should be so.

Key Words

Classical chaos quantum chaos adiabatic quantization Born-Oppenheimer wedge billiard hard chaos semiclassical 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Dahlqvist,J. Phys. A 25:6265 (1992).Google Scholar
  2. 2.
    Y. Y. Bai, B. Hose, K. Stefanski, and H. S. Taylor,Phys. Rev. A 31:2821 (1985).Google Scholar
  3. 3.
    M. Sieber and F. Steiner,Physica D 44:248 (1990).Google Scholar
  4. 4.
    S. W. McDonald, Ph.D. Thesis, University of California (Berkeley) (1983).Google Scholar
  5. 5.
    B. Eckhardt, G. Hose, and E. Pollak,Phys. Rev. A 39:3776 (1989).Google Scholar
  6. 6.
    P. A. Dando, T. S. Montiero, W. Jans, and W. Schwiezer,Prog. Theor. Phys. Suppl. 116:403 (1994).Google Scholar
  7. 7.
    W. Jans, T. S. Montiero, W. Schweizer, and P. A. Dando,J. Phys. A 26:3187 (1993).Google Scholar
  8. 8.
    I. C. Percival and D. Richards,Introduction to Dynamics (Cambridge University Press, Cambridge, 1982).Google Scholar
  9. 9.
    L. I. Schiff,Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968); S. K. Knudson and D. W. Noid,J. Chem. Ed. 66:133 (1989).Google Scholar
  10. 10.
    T. Szeredi and D. A. Goodings,Phys. Res. E.48:3518 (1993); N. D. Whelan, D. A. Goodings, and J. K. Cannizzo,Phys. Rev. A 42:742 (1990); N. I. Chernov,Physica D 53:233 (1991); M. P. Wojtkowski,Commun. Math. Phys. 126:507 (1990); P. H. Richter, H. J. Scholz, and A. Wittek,Nonlinearity 3:45 (1990); H. E. Lehtihet and B. N. Miller,Physica D 21:93 (1986).Google Scholar
  11. 11.
    T. Szeredi, J. H. Lefebre, and D. A. Goodings,Nonlinearity 7:1463 (1994); T. Szeredi and D. A. Goodings,Phys. Rev. E 48:3529 (1993); C. Rouvinez and U. Smilansky,J. Phys. A 28:77 (1995); A. Wittek, Die Quantenmechanik eines nichtintegrablen systems; klassisch chaotisches billiard in gravitationsfeld, Ph.D. Thesis, Bremen (1991).Google Scholar
  12. 12.
    M. Kac,Am. Math. Monthly 73, 1 (1966).Google Scholar
  13. 13.
    M. V. Berry,Eur. J. Phys. 2:91 (1981).Google Scholar
  14. 14.
    E. P. Wigner,Phys. Rev. 40:749 (1932).Google Scholar
  15. 15.
    M. V. Berry, Semiclassical mechanics of regular and irregular motion, inLes Houches, Session XXXVI, Chaotic Behavior of Deterministic Systems (North-Holland, Amsterdam, 1983).Google Scholar
  16. 16.
    M. V. Berry,Proc. Soc. A 287:237 (1977).Google Scholar
  17. 17.
    M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • T. Szeredi
    • 1
  1. 1.Department of Applied MathematicsThe Open UniversityMilton KeynesUK

Personalised recommendations