Journal of Statistical Physics

, Volume 86, Issue 5–6, pp 1067–1087 | Cite as

Friction coefficients and directed motion of asymmetric test particles

  • K. Handrich
  • F. -P. Ludwig
Articles

Abstract

The behavior of a test particle in a rarefied gas of classical particles is investigated. considering different interaction mechanisms (specular and diffuse reflection, respectively). For large mass ratio between test and gas particles, analytical expressions for the linear friction coefficient are derived. Moreover, the existence of directed motion of asymmetric test particles with distinct initial conditions (but in the absence of any gradients) is shown. The analytical results are supported by a numerical simulation technique applicable to systems with any mass ratio, which is described here in detail.

Key Words

Brownian motion friction coefficients fluctuation-induced transport numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein,Ann. Phys. (Leipzig)17:549 (1905).Google Scholar
  2. 2.
    D. L. Ermak and J. A. McCammon,J. Chem. Phys. 69(4):1352 (1978).Google Scholar
  3. 3.
    G. Ciccotti and J.-P. Ryckaert,J. Mol. Phys. 40(1):141 (1980).Google Scholar
  4. 4.
    J. F. Fernández and J. Marro,J. Stat. Phys. 71(1/2):225 (1993).Google Scholar
  5. 5.
    W. Schaertl and H. Sillescu,J. Stat. Phys. 74(3/4):687 (1994).Google Scholar
  6. 6.
    S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943).Google Scholar
  7. 7.
    J. R. Dorfman and E. G. D. Cohen,Phys. Rev. A 6(2):776 (1972).Google Scholar
  8. 8.
    D. Levesque and W. T. Ashurst,Phys. Rev. Lett. 33(5):277 (1974).Google Scholar
  9. 9.
    J. J. Erpenbeck and W. W. Wood,Phys. Rev. A 26(3):1648 (1982).Google Scholar
  10. 10.
    J. Marro and J. Masoliver,J. Phys. C 18:4691 (1985).Google Scholar
  11. 11.
    H. M. Schaink and C. Hoheisel,Phys. Rev. A 45(12):8559 (1992).Google Scholar
  12. 12.
    S. Leibler,Nature 370:412 (1994).Google Scholar
  13. 13.
    K. Handrick,Sov. Phys. JETP 69(3):513 (1989).Google Scholar
  14. 14.
    U. heiber, Ph.D. thesis, Chapter 2, University of Ilmenau, Germany (1995).Google Scholar
  15. 15.
    R. S. Modak,Am. J. Phys. 52(1):43 (1984).Google Scholar
  16. 16.
    L. M. Raff, J. Lorenzen, and B. C. McCoy,J. Chem. Phys. 46(11):4265 (1967).Google Scholar
  17. 17.
    K. Handrich and U. Heiber, To be published.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • K. Handrich
    • 1
  • F. -P. Ludwig
    • 1
  1. 1.Institut für PhysikTechnische Universität IlmenauIlmenauGermany

Personalised recommendations