Journal of Statistical Physics

, Volume 78, Issue 1–2, pp 389–412 | Cite as

The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation

  • R. Esposito
  • J. L. Lebowitz
  • R. Marra


We consider the flow of a gas in a channel whose walls are kept at fixed (different) temperatures. There is a constant external force parallel to the boundaries which may themselves also be moving. The system is described by the stationary Boltzmann equation to which are added Maxwellian boundary conditions with unit accommodation coefficient. We prove that when the temperature gap, the relative velocity of the planes, and the force are all sufficiently small, there is a solution which converges, in the hydrodynamic limit, to a local Maxwellian with parameters given by the stationary solution of the corresponding compressible Navier-Stokes equations with no-slip voundary conditions. Corrections to this Maxwellian are obtained in powers of the Knudsen number with a controlled remainder.

Key Words

Hydrodynamic limit stationary Navier-Stokes equations kinetic theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Onsager, Reciprocal relations in irreversible processes,Phys. Rev. 37:405–426 (1931);38, 2265–2279 (1932); L. Onsager and S. Machlup, Fluctuations and irreversible processes91:1505–1512, 1512–1515 (1953).Google Scholar
  2. 2.
    D. D. Joseph,Stability of Fluid Motions (Springer-Verlag, Berlin, 1976).Google Scholar
  3. 3.
    H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, New York, 1991).Google Scholar
  4. 4.
    A. De Masi and E. Presutti,Lecture Notes in Mathematics, No. 1501 (Springer-Verlag, Berlin, 1991).Google Scholar
  5. 5.
    C. Cercignani,The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).Google Scholar
  6. 6.
    T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation,Commun. Math. Phys. 61:119–148 (1978).Google Scholar
  7. 7.
    R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation,Commun. Pure Appl. Math. 33:651–666 (1980).Google Scholar
  8. 8.
    S. Ukai, The Euler limit and initial layer of the nonlinear Boltzmann equation,Hokkaido Math. J. 12:303–324 (1983).Google Scholar
  9. 9.
    C. Bardos, R. E. Caflisch, and B. Nicolaenko,Thermal Layer Solutions of the Boltzmann Equation, Random Fields: Rigorous Results in Statistical Physics. Koszeg 1984, J. Fritz, A. Jaffe, and D. Szasz, eds. (Birkhauser, Boston, 1985).Google Scholar
  10. 10.
    R. Esposito, J. L. Lebowitz, and R. Marra, Hydrodynamic limit of the stationary Boltzmann equation in a slab,Commun. Math. Phys. 160:49–80 (1994).Google Scholar
  11. 11.
    R. Esposito, J. L. Lebowitz, and R. Marra, in preparation.Google Scholar
  12. 12.
    E. S. Asimolov, N. K. Makashev, and V. I. Nosik, Heat transfer between plane parallel plates in a gas of Maxwellian molecules,Sov. Phys. Dokl. 24:892–894 (1979).Google Scholar
  13. 13.
    A. Santos, J. J. Brey, C. S. Kim, and J. W. Dufty, Velocity distribution for a gas with steady heat flow,Phys. Rev. A 39:320–327 (1989).Google Scholar
  14. 14.
    A. Santos, J. J. Brey, and J. W. Dufty, An exact solution to the inhomogeneous nonlinear Boltzmann equation, Preprint (1993).Google Scholar
  15. 15.
    N. B. Maslova,Non Linear Evolution Equations, Kinetic Approach (World Scientific, Singapore, 1993).Google Scholar
  16. 16.
    A. Grad, Asymptotic theory of the Boltzmann equation,Phys. Fluids 6:147–181 (1963); Asymptotic theory of the Boltzmann equation II, inRarefied Gas Dynamics II (Paris, 1962), pp. 26–59.Google Scholar
  17. 17.
    A. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann operator,Proc. Symp. Appl. Math. XVII:154–183 (1965).Google Scholar
  18. 18.
    L. Arkeryd, On the strongL 1 trend to equilibrium for the Boltzmann equation,Studies Appl. Math. 87:283–288 (1992).Google Scholar
  19. 19.
    P. L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications,Cahiers de Mathématique de la Décision, No. 9301, CEREMADE (1993).Google Scholar
  20. 20.
    A. De Masi, R. Esposito, and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation,Commun. Pure Appl. Math. 42:1189–1214 (1989).Google Scholar
  21. 21.
    R. Esposito, J. L. Lebowitz, and R. Mara, Navier-Stokes limit of the Boltzmann equation, inStochastic Processes, Geometry and Physics (World Scientific, Singapore, to appear).Google Scholar
  22. 22.
    F. Golse, B. Perthame, and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation,Arch. Rat. Mech. 104:81–96 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. Esposito
    • 1
  • J. L. Lebowitz
    • 2
  • R. Marra
    • 3
  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomeItaly
  2. 2.Mathematics and Physics DepartmentsRutgers UniversityNew Brunswick
  3. 3.Dipartimento di FisicaUniversità di Roma Tor VergataRomeItaly

Personalised recommendations