Skip to main content
Log in

Besov spaces and the multifractal hypothesis

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Parisi and Frisch proposed some time ago an explanation for “multiscaling” of turbulent velocity structure functions in terms of a “multifractal hypothesis,” i.e., they conjecture that the velocity field has local Hölder exponents in a range [h min,h max], with exponents <h occurring on a setS(h) with a fractal dimensionD(h). Heuristic reasoning led them to an expression for the scaling exponentz p ofpth order as the Legendre transform of the codimensiond-D(h). We show here that a part of the multifractal hypothesis is correct under even weaker assumptions: namely, if the velocity field hasL p-mean Hölder indexs, i.e., if it lies in the Besov spaceB s,∞ p , then local Hölder regularity is satisfied. Ifs<d/p, then the hypothesis is true in a generalized sense of Hölder space with negative exponents and we discuss the proper definition of local Hölder classes of negative index. Finally, if a certain “box-counting dimension” exists, then the Legendre transform of its codimension gives the scaling exponentz p , and, more generally, the maximal Besov index of order,p, ass p =z p /p. Our method of proof is derived from a recent paper of S. Jaffard using compactly-supported, orthonormal wavelet bases and gives an extension of his results. We discuss implications of the theorems for ensemble-average scaling and fluid turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Frisch and G. Parisi, On the singularity structure of fully-developed turbulence, inTurbulence and Predictability of Geophysical Flows and Climate Dynamics, (North-Holland, Amsterdam, 1985), pp. 84–88.

    Google Scholar 

  2. F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia,J. Fluid Mech. 140:63 (1984).

    Google Scholar 

  3. E. Aurell et al.,J. Fluid Mech. 238:467 (1992).

    Google Scholar 

  4. H. Treibel,Theory of Function Spaces (Birkhaüser, Basel, 1983).

    Google Scholar 

  5. I. Daubechies and J. C. Lagarias, On the thermodynamic formalism for multifractal functions, preprint.

  6. Z. S. She and E. Leveque,Phys. Rev. Lett. 72:336 (1994).

    Google Scholar 

  7. S. Jaffard, Multifractal formalism for functions, Part I: Results valid for all functions, preprint (1994).

  8. S. Jaffard,C.R. Acad. Sci. Paris, Ser. I 314:31 (1992).

    Google Scholar 

  9. H.-J. Schmeisser and H. Treibel,Topics in Fourier Analysis and Function Spaces (Wiley, Chichester, England, 1987).

    Google Scholar 

  10. I. daubechies,Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992).

    Google Scholar 

  11. Y. Meyer,Ondelettes et Opérateurs, I, II, III (Hermann, Paris, 1990).

    Google Scholar 

  12. M. Frazier, B. Jawerth and G. Weiss,Littlewood-Paley Theory and the Study of Function Spaces (American Mathematical Society, Providence, Rhode Island, 1991).

    Google Scholar 

  13. S. Jaffard,C.R. Acad. Sci. Paris Ser. I 308:79 (1989).

    Google Scholar 

  14. K. Falconer,Fractal Geometry. Mathematical Foundations and Applications (Wiley, Chichester, England, 1990).

    Google Scholar 

  15. G. L. Eyink,Phys. Lett. A 172:355 (1993).

    Google Scholar 

  16. G. L. Eyink,Phys. Rev. E 48:1823 (1993).

    Google Scholar 

  17. R. J. DiPerna and A. J. Majda,Commun. Math. Phys. 108:667 (1987).

    Google Scholar 

  18. R. J. DiPerna, P. L. Lions, and Y. Meyer,Ann. Inst. Henri Poincaré 8:271 (1991).

    Google Scholar 

  19. G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer,Physica D, to appear.

  20. L. Onsager,Nuovo Cimento Suppl. 6:279 (1949).

    Google Scholar 

  21. P. Constantin, Weinan E, and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equations,Commun. Math. Phys., to appear.

  22. B. B. Mandelbrot Two meanings of multifractality, and the notion of negative fractal dimension, inChaos/Xaoc. Soviet-American Perspectives on Nonlinear Science, David K. Campbell, ed. (American Institute of Physics, New York, 1990).

    Google Scholar 

  23. U. Frisch,Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  24. R. Benziet al., Random process for the construction of multiaffine fields,Physica D (1993), in press.

  25. M. J. Vishik and A. V. Fursikov,Mathematical Problems of Statistical Hydrodynamics (Kluwer, Dordrecht, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyink, G.L. Besov spaces and the multifractal hypothesis. J Stat Phys 78, 353–375 (1995). https://doi.org/10.1007/BF02183353

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183353

Key Words

Navigation