Skip to main content
Log in

Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In addition to the flavonoids exuded by many legumes as signals to their rhizobial symbionts, alfalfa (Medicago sativa L.) releases two betaines, trigonelline and stachydrine, that induce nodulation (nod) genes inRhizobium meliloti. Experiments with14C-phenylalanine in the presence and absence of phenylalanine ammonia-lyase inhibitors show that exudation of flavonoidnod-gene inducers from alfalfa roots is linked closely to their concurrent synthesis. In contrast, flavonoid and betainenod-gene inducers are already present on mature seeds before they are released during germination. Alfalfa seeds and roots release structurally differentnod-gene-inducing signals in the absence of rhizobia. WhenR. meliloti is added to roots, medicarpin, a classical isoflavonoid phytoalexin normally elicited by pathogens, and anod-gene-inducing compound, formononetin-7-O-(6″-O-malonylglycoside), are exuded. Carbon flow through the phenylpropanoid pathway and into the flavonoid pathway via chalcone synthase is controlled by complexcis-acting sequences andtrans-acting factors which are not completely understood. Even less information is available on molecular regulation of the two other biosynthetic pathways that produce trigonelline and stachydrine. Presumably the three separate pathways for producingnod-gene inducers in some way protect the plant against fluctuations in the production or transmission of the two classes of signals. Factors influencing transmission of alfalfanod-gene inducers through soil are poorly defined, but solubility differences between hydrophobic flavonoids and hydrophilic betaines suggest that the diffusional traits of these molecules are not similar. Knowledge derived from studies of how legumes regulate rhizobial symbionts with natural plant products offers a basis for defining new fundamental concepts of rhizosphere ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amblès A, Jacquesy J C, Jambu P, Joffre J and Maggi-Churin R 1991 Polar lipid fraction in soil: a kerogen-like matter. Organic Geochem. 17, 341–349.

    Google Scholar 

  • Amrhein N and Gödeke K-H 1977 α-Aminooxy-β-phenylpropionic acid — a potent inhibitor of L-phenylalanine ammonia-lyase in vitro and in vivo. Plant Sci. Lett. 8, 313–317.

    Google Scholar 

  • Ayabe S-I, Udagawa A and Furuya T 1988 NAD(P)H-dependent 6′-deoxychalcone synthase activity inGlycyrrhiza cells induced by yeast extract. Arch. Biochem. Biophys. 261, 458–462.

    PubMed  Google Scholar 

  • Barz W 1970 Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry 9, 1745–1749.

    Google Scholar 

  • Beilstein Handbook of Organic Chemistry. 1991. 4th edition. Springer-Verlag, Berlin.

  • Bernard T, Pocard J-A, Perroud B and Le Rudulier D 1986 Variations in the response of salt-stressedRhizobium strains to betaines. Arch. Microbiol. 143, 359–364.

    Google Scholar 

  • Boivin C, Barran L R, Malpica C A and Rosenberg C 1991 Genetic analysis of a region of theRhizobium meliloti pSym plasmid specifying catabolism of trigonelline, a secondary metabolite present in legumes. J. Bacteriol. 173, 2809–2817.

    PubMed  Google Scholar 

  • Caetano-Anollés G, Crist-Estes D K and Bauer W D 1988 Chemotaxis ofRhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170, 3164–3169.

    PubMed  Google Scholar 

  • Cooper J E and Rao J R 1992 Localized changes in flavonoid biosynthesis in roots ofLotus pedunculatus after infection byRhizobium lott. Plant Physiol. 100, 444–450.

    Google Scholar 

  • Dakora F D, Joseph C M and Phillips D A 1993 Alfalfa root exudates contain isoflavonoids in the presence ofRhizobium meliloti. Plant Physiol. 101, 819–824.

    PubMed  Google Scholar 

  • Dalkin K, Edwards R, Edington B and Dixon R A 1990 Stress responses in alfalfa (Medicago sativa L.) I. Induction of phenylpropanoid biosynthesis and hydrolytic enzymes in elicitor-treated cell suspensions cultures. Plant Physiol. 92, 440–446.

    Google Scholar 

  • D'Arcy-Lameta A 1986 Study of soybean and lentil root exudates II. Identification of some polyphenolic compounds, relation with plantlet physiology. Plant and Soil 92, 113–123.

    Google Scholar 

  • Dénarié J, Debellé F and Rosenberg C 1992 Signaling and host range variation in nodulation. Annu. Rev. Microbiol. 46, 497–531.

    PubMed  Google Scholar 

  • Dharmatilake A J and Bauer W D 1992 Chemotaxis ofRhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58, 1153–1158.

    Google Scholar 

  • Dixon R A and Lamb C J 1990 Regulation of secondary metabolism at the biochemical and genetic levels.In Secondary Products from Plant Tissue Culture. Ed. B V Charlwood and M J C Rhodes. pp 103–118, Clarendon Press, Oxford.

    Google Scholar 

  • Dornbos D L, Spencer G F and Miller R W 1990 Medicarpin delays alfalfa seed germination and seedling growth. Crop Sci. 30, 162–166.

    Google Scholar 

  • Estabrook E M and Sengupta-Gopalan C 1991 Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell 3, 299–308.

    PubMed  Google Scholar 

  • Firmin J L, Wilson K E, Rossen L and Johnston A W B 1986 Flavonoid activation of nodulation genes inRhizobium reversed by other compounds present in plants. Nature 324, 90–92.

    Google Scholar 

  • Fisher R F and Long S R 1992Rhizobium-plant signal exchange. Nature 357, 655–660.

    PubMed  Google Scholar 

  • Fougère F and Le Rudulier D 1990 Uptake of glycine betaine and its analogues by bacteroids ofRhizobium meliloti. J. Gen. Microbiol. 136, 157–163.

    PubMed  Google Scholar 

  • Gajendiran N and Mahadevan A 1990 Utilization of phenolic substances byRhizobium sp. Ind. J. Exp. Biol. 28, 1136–1140.

    Google Scholar 

  • Geissman T A and Clinton R O 1946 Flavanones and related compounds. I. The preparation of polyhydroxychalcones and flavanones. J. Am. Chem. Soc. 68, 697–700.

    Google Scholar 

  • Gloux K and Le Rudulier D 1989 Transport and catabolism of proline betaine in salt stressedRhizobium meliloti. Arch. Microbiol. 151, 143–148.

    Google Scholar 

  • Goldmann A, Boivin C, Fleury V, Message B, Lecoeur L, Maille M and Tepfer D 1991 Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism inRhizobium meliloti are located on pSym in the symbiotic region. Mol. Plant-Microbe Inter. 4, 571–578.

    Google Scholar 

  • Göttfert M, Horvath B, Kondorosi E, Putnoky P, Rodriguez-Quinones F and Kondorosi A 1986 At least two differentnodD genes are necessary for efficient nodulation on alfaifa byRhizobium meliloti. J. Mol. Biol. 191, 411–420.

    PubMed  Google Scholar 

  • Gustine D L, Sherwood R T and Vance C P 1978 Regulation of phytoalexin synthesis in jackbean callus cultures. Plant Physiol. 61, 226–230.

    Google Scholar 

  • Hans N and Grover S K 1993 An efficient conversion of 2′-hydroxychalcones to flavones. Synthetic Comm. 23, 1021–1023.

    Google Scholar 

  • Harborne J B (Ed.) 1988 The Flavonoids, Advances in Research Since 1980. Chapman and Hall London. 621 p.

    Google Scholar 

  • Harrison M J, Choudhary A D, Dubery I, Lamb C J and Dixon R A 1991a Stress responses in alfalfa (Medicago sativa L.). 8.Cis-elements andtrans-acting factors for the quantitative expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts. Plant Molec. Biol. 16, 877–890.

    Google Scholar 

  • Harrison M J, Lawton M A, Lamb C J and Dixon R A 1991b Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter. Proc. Natl. Acad., Sci. USA 88, 2515–2519.

    Google Scholar 

  • Hartwig U A, Joseph C M and Phillips D A 1991 Flavonoids released naturally from alfalfa seeds enhance growth rate ofRhizobium meliloti. Plant Physiol. 95, 797–803.

    Google Scholar 

  • Hartwig U A, Maxwell C A, Joseph C M and Phillips D A 1990a Chrysoeriol and luteolin released from alfalfa seeds inducenod genes inRhizobium meliloti. Plant Physiol. 92, 116–122.

    Google Scholar 

  • Hartwig U A, Maxwell C A, Joseph C M and Phillips D A 1990b Effects of alfalfanod gene-inducing flavonoids onnodABC transcription inRhizobium meliloti strains containing differentnodD genes. J. Bacteriol. 172, 2769–2773.

    PubMed  Google Scholar 

  • Hartwig U A and Phillips D A 1991 Release and modification ofnod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol. 95, 804–807.

    Google Scholar 

  • Harwood L M, Loftus G C, Oxford A and Thomson C 1990 An improved procedure for cyclisation of chalcones to flavanones using celite supported potassium fluoride in methanol: total synthesis of bavachinin. Syn. Comm. 20, 649–657.

    Google Scholar 

  • Honma M A and Ausubel F M 1987Rhizobium meliloti has three functional copies of thenodD symbiotic regulatory gene. Proc. Natl. Acad. Sci., USA 84, 8558–8562.

    Google Scholar 

  • Hungria M, Joseph C M and Phillips D A 1991 Anthocyanidins and flavonols, major nod-gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol. 97, 751–758.

    Google Scholar 

  • Ingham J L 1983 Naturally occurring isoflavonoids (1855–1981). Fortschritte d. Chem. org. Naturst. 43, 1–266.

    Google Scholar 

  • Jones G P, Naidu B P, Starr R K and Paleg L G 1986 Estimates of solutes accumulating in plants by1H nuclear magnetic resonance spectroscopy. Aust. J. Plant Physiol. 13, 649–658.

    Google Scholar 

  • Kosslak R M, Bookland R, Barkei J, Paaren H E and Appelbaum E R 1987 Induction ofBradyrhizobium japonicum commonnod gene by isoflavones isolated fromGlycine max. Proc. Natl. Acad. Sci., USA 84, 7428–7432.

    Google Scholar 

  • Köster J, Strack D and Barz W 1983 High performance liquid chromatographic separation of isoflavones and structural elucidation of isoflavone 7-O-glucoside 6″-malonates fromCicer arietinum. J. Med. Planta Res. 48, 131–135.

    Google Scholar 

  • Lam S T, Ellis D M and Ligon J M 1991 Genetic approaches for studying rhizosphere colonization.In The Rhizosphere and Plant Growth. Ed. D L Keister and P B Cregan. pp 43–50. Kluwer Academic Publ, Dordrecht.

    Google Scholar 

  • León-Barrios M, Dakora F D, Joseph C M and Phillips D A 1993 Isolation ofRhizobium meliloti nod gene inducers from alfalfa rhizosphere soil. Appl. Environ. Microbiol. 59, 636–639.

    Google Scholar 

  • Loake G J, Choudhary A D, Harrison M J, Mavandad M, Lamb C J and Dixon R A 1991 Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter. Plant Cell 3, 829–840.

    PubMed  Google Scholar 

  • Maxwell C A, Edward R and Dixon R A 1992 Identification, purification and characterization of S-adenosyl-L-methonine: isoliquiritigenin 2′-O-methyltransferase from alfalfa (Medicago sativa L.). Arch. Biochem. Biophys. 293, 158–166.

    PubMed  Google Scholar 

  • Maxwell C A, Harrison M J and Dixon R A 1993 Molecular characterization and expression of alfalfa isoliquiritigenin 2′-O-methyltransferase, an enzyme specifically involved in the biosynthesis of a transcriptional activator ofRhizobium meliloti nodulation genes. Plant J. 4, 971–981.

    PubMed  Google Scholar 

  • Maxwell C A, Hartwig U A, Joseph C M and Phillips D A 1989 A chalcone and two related flavonoids released from alfalfa roots inducenod genes inRhizobium meliloti. Plant Physiol. 91, 842–847.

    Google Scholar 

  • Maxell C A and Phillips D A 1990 Concurrent synthesis and release ofnod-gene-inducing flavonoids from alfalfa roots. Plant Physiol. 93, 1552–1558.

    Google Scholar 

  • Morgan A and Marion L 1956 The biogenesis of alkaloids XVII. Further study of the role of ornithine in the biogenesis of stachydrine. Can. J. Chem. 34, 1704–1708.

    Google Scholar 

  • Musich J A and Rapoport H 1977 Reaction of O-methyl-N,N′-diisopropylisourea with amino acids and amines. J. Org. Chem. 42, 139–141.

    PubMed  Google Scholar 

  • Parniske M, Zimmermann C, Cregan P B and Werner D 1990 Hypersensitive reaction of nodule cells in theGlycine sp./Bradyrhizobium japonicum-symbiosis occurs at the genotype-specific level. Bot. Acta 103, 143–148.

    Google Scholar 

  • Peters N K, Frost J W and Long S R 1986 plant flavone, luteolin, induces expression ofRhizobium meliloti nodulation genes. Science 233, 977–980.

    PubMed  Google Scholar 

  • Phillips D A 1992 Flavonoids: plant signals to soil microbes.In Phenolic Metabolism in Plants. Eds. H A Stafford and R K Ibrahim, Plenum Press, New York. Rec. Adv. Phytochem. 26, 201–231.

    Google Scholar 

  • Phillips D A, Dakora F D, León-Barrios M, Sande E and Joseph C M 1993 Signals released from alfalfa regulate microbial activities in the rhizosphere.In New Horizons in Nitrogen Fixation. Ed. R Palacios, J Mora and W E Newton. pp 197–206. Nijhoff/Junk, Dordrecht.

    Google Scholar 

  • Phillips D A, Joseph C M and Maxwell C A 1992 Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein inRhizobium meliloti. Plant Physiol. 99, 1526–1531.

    Google Scholar 

  • Rao J R, Sharma N D, Hamilton J T G, Boyd D R and Cooper J E 1991 Biotransformation of the pentahydroxy flavone quercetin byRhizobium loti andBradyrhizobium strains (Lotus). Appl. Environ. Microbiol. 57, 1563–1565.

    Google Scholar 

  • Recourt K, Schripsema J, Kijne J W, Van Brussel A A N and Lugtenberg B J J 1991 Inoculation ofVicia sativa subsp.nigra roots withRhizobium leguminosarum biovarviciae results in release ofnod gene activating flavanones and chalcones. Plant Mol. Biol. 16, 841–852.

    PubMed  Google Scholar 

  • Recourt K, van Tunen A J, Mur L A, van Brussel A A N, Lugtenberg B J J and Kijne J W 1992 Activation of flavonoid biosynthesis in roots ofVicia sativa sub-sp.nigra by inoculation withRhizobium leguminosarum biovarviciae. Plant Molec. Biol. 19: 411–420.

    Google Scholar 

  • Redmond J W, Batley M, Djordjevic M A, Innes R W, Kuempel P L and Rolfe B G 1986 Flavones induce expression of nodulation genes inRhizobium. Nature 323, 632–635.

    Google Scholar 

  • Robertson A V and Marion L 1960 The biogenesis of alkaloids XXV. The role of hygric acid in the biogenesis of stachydrine. Can. J. Chem. 38, 396–398.

    Google Scholar 

  • Rolfe B G, Batley M, Redmond J W, Richardson A E, Simpson R J, Bassam B J, Sargent C L, Weinman J J, Djordjevic M A, and Dazzo F B 1988 Phenolic compounds secreted by legumes.In Nitrogen Fixation: Hundred Years After. Ed. H Bothe, F Jde Bruijn and W E Newton. pp 405–409. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Rovira A D and Harris J R 1961 Plant root excretions in relation to the rhizosphere effect V. The exudation of B-group vitamins. Plant and Soil 14, 199–214.

    Google Scholar 

  • Ryder T B, Hedrick S A, Bell J N, Liang X, Clouse S D and Lamb C J 1987 Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase. Molec. Gen. Genet. 210, 219–233.

    PubMed  Google Scholar 

  • Sanjuan J and Olivares J 1989 Implication ofnifA in the regulation of genes located on aRhizobium meliloti cryptic plasmid that affects nodulation efficiency. J. Bacteriol. 171, 4154–4161.

    PubMed  Google Scholar 

  • Schmidt J, John M, Wieneke U, Krüssmann H-D and Schell J 1986 Expression of the nodulation genenodA inRhizobium meliloti and localization of the gene product in the cytosol. Proc. Natl. Acad. Sci., USA, 83, 9581–9585.

    Google Scholar 

  • Seshadri TR 1962 Interconversions of flavonoid compounds.In The Chemistry of Flavonoid Compounds. Ed. T A Geissman. pp. 156–196. McMillan, NY.

    Google Scholar 

  • Sethi J K and Carew D P 1974 Growth and betaine formation inMedicago sativa tissue cultures. Phytochemistry 13, 321–324.

    Google Scholar 

  • Siqueira J O, Nair M G, Hammerschmidt R and Safir G R 1991 Significance of phenolic compounds in plant-soil-microbial systems. Crit. Rev. Plant Sci. 10, 63–121.

    Google Scholar 

  • Spaink H P 1992 Rhizobial lipo-oligosaccharides: answers and questions. Plant Molec. Biol. 20, 977–986.

    Google Scholar 

  • Srivastava S D and Srivastava S K 1987 Synthesis of a new flavone Ind. J. Chem. 26B, 257–58.

    Google Scholar 

  • Stafford H A 1990 Flavonoid Metabolism. CRC Press, Boca Raton, Florida. 298 p.

    Google Scholar 

  • Steenbock H 1918 Isolation and identification of stachydrin from alfalfa hay. J. Biol. Chem. 35, 1–13.

    Google Scholar 

  • Taguchi H, Nishitani H, Okumura K, Shimabayashi Y and Iwai K 1989a Biosynthesis and metabolism-of NAD inLemna paucicostata 151. Agric. Biol. Chem. 53, 1543–1549.

    Google Scholar 

  • Taguchi H, Nishitani H, Okumura K, Shimabayashi Y and Iwai K 1989b Biosynthesis and metabolism of trigonelline inLemna paucicostata 151. Agric. Biol. Chem. 53, 2867–2871.

    Google Scholar 

  • Taguchi H and Shimabayashi Y 1983 Findings of trigonelline demethylating enzyme activity in various organisms and some properties of the enzyme from hog liver. Biochem. Biophys. Res. Comm. 113, 569–574.

    PubMed  Google Scholar 

  • Tramontano W A, McGinley P A, Ciancaglini E F and Evans L S 1986 A survey of trigonelline concentrations in dry seeds of the Dicotyledoneae. Environ. Expt. Bot. 26, 197–205.

    Google Scholar 

  • Upmeier B, Gross W, Köster S and Barz W 1988 Purification and properties of S-adenosyl-L-methionine: nicotinic acid-N-methyltransferase from cell suspension cultures ofGlycine max L. Arch. Biochem. Biophys. 262, 445–454.

    PubMed  Google Scholar 

  • Welle R and Grisebach H 1989 Phytoalexin synthesis in soybean cells: elicitor induction of reductase involved in biosynthesis of 6′-deoxychalcone. Arch. Biochem. Biophy. 272, 97–102.

    Google Scholar 

  • Wiehler G and Marion L 1958 The biogenesis of alkaloids XX. The induced biogenesis of stachydrine. J. Biol. Chem. 231, 799–805.

    PubMed  Google Scholar 

  • Wolk C P, Cai Y and Panoff J M 1991 Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc. Natl. Acad. Sci., USA 88, 5355–5359.

    Google Scholar 

  • Wyn Jones R G and Storey R 1981 BetainesIn Physiology and Biochemistry of Drought Resistance in Plants. Ed. L G Paleg and D Aspinall. pp 171–204. Academic Press, Sydney.

    Google Scholar 

  • Zoń J and Amrhein N 1992 Inhibitors of phenylalanine ammonia-lyase: 2-aminoindan-2-phophonic acid and related compounds. Liebigs Ann. Chem. 1992, 625–628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, D.A., Dakora, F.D., Sande, E. et al. Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts. Plant Soil 161, 69–80 (1994). https://doi.org/10.1007/BF02183086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183086

Key words

Navigation