Skip to main content
Log in

Ammonium sensing in nitrogen fixing bacteria: Functions of theglnB andglnD gene products

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

A plentiful supply of fixed nitrogen as ammonium (or other compounds such as nitrate or amino acids) inhibits nitrogen fixation in free-living bacteria by preventing nitrogenase synthesis and/or activity. Ammonium and nitrate have variable effects on the ability ofRhizobiaceae (Rhizobium, Bradyrhizobium andAzorhizobium) species to nodulate legume hosts and on nitrogen fixation capacity in bacteroid cells contained in nodules or in plant-free bacterial cultures. In addition to effects on nitrogen fixation, excess ammonium can inhibit activity or expression of other pathways for utilization of nitrogenous compounds such as nitrate (through nitrate and nitrite reductase), or glutamine synthetase (GS) for assimilation of ammonium. This paper describes the roles of two key genesglnB andglnD, whose gene products sense levels of fixed nitrogen and initiate a cascade of reactions in response to nitrogen status. While work onEscherichia coli and other enteric bacteria provides the model system,glnB and, to a lesser extent,glnD have been studied in several nitrogen fixing bacteria. Such reports will be reviewed here. Recent results on the identity and function of theglnB andglnD gene products inAzotobacter vinelandii (a free-living soil diazotroph) and inRhizobium leguminosarum biovarviciae, hereinafter designatedR.l. viciae will be presented. New data suggests thatAzotobacter vinelandii probably contains aglnB-like gene and this organism may have twoglnD-like genes (one of which was recently identified and namednfrX). In addition, evidence for uridylylation of theglnB gene product (the PII protein) ofR. l. viciae in response to fixed nitrogen deficiency is presented. Also, aglnB mutant ofR. l. viciae has been isolated; its characteristics with respect to expression of nitrogen regulated genes is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

KD:

kiloDaltons

kb:

kilobase

UMP:

uridine monophosphate

References

  • Adler S P, Purich D and Stadtman E R 1975 Cascade control ofEscherichia coli glutamine synthetase. Properties of the PII regulator protein and the uridylyltransferase-uridylylremoving enzyme. J.Biol.Chem. 250, 6264–6272

    PubMed  Google Scholar 

  • Austin S, Henderson N and Dixon R 1987 Requirements for transcriptional activation in vitro of the nitrogen regulatedglnA andnifLA promoters fromKlebsiella pneumoniae: dependence on activator concentration. Mol.Microbiol. 1, 92–100.

    PubMed  Google Scholar 

  • Bali A, Blanco G, Hill S and Kennedy C 1992 Excretion of ammonium by anifL mutant of nitrogen fixingAzotobacter vinelandii. Appl.Environ.Microbiol 58, 1711–1718

    PubMed  Google Scholar 

  • Bender RA 1991 The role of the NAC Protein in the nitrogen regulation ofKiebsiella Appl.Environ.Microbiol 58, 1711–1718.

    Google Scholar 

  • Bennett L T, Cannon F C and Dean D 1988, Nucleotide sequence and mutagenesis of thenifA gene fromAzotobacter vinelandii. Mol.Microbiol. 2, 315–321.

    PubMed  Google Scholar 

  • Blanco G, Drummond M D, Kennedy C and Woodley P 1993 Molecular analysis of thenifL gene ofAzotobacter vinelandii. Mol.Microbiol. 9, 869–879.

    PubMed  Google Scholar 

  • Bueno R, Pahel G and Magasanlk B 1985 Role ofglnB andglnD gene products in regulation of theglnALG operon ofEscherichia coli. J.Bacteriol. 164, 816–822.

    PubMed  Google Scholar 

  • Carlson T A, Guerinot M L and Chelm B K 1985 Characterization of the gene encoding glutamine synthetase 1 (glnA) fromBradyrhizobium japonicum. J.Bacteriol 162, 698–703.

    PubMed  Google Scholar 

  • Chiurazii M, and Lacarino M 1990 Transcriptional analysis of theglnB-glnA region ofRhizobium leguminosarum biovarviciae. Mol. Microbiol. 4, 1727–1735

    PubMed  Google Scholar 

  • Chiurazzi M, Meza R, Lara M, Lahm A, Defez R, Iaccarino M and Espim G 1992 TheRhizobium leguminosarum biovarphaseoli glnT gene, encoding glutamine synthetase 111. Gene 119, 1–8.

    PubMed  Google Scholar 

  • Chock P B, Rhee S G and Stadtman R R 1980 Interconvertible enzyme cascades in cellular recognition. Annu. Rev. Biochem. 49, 813–843.

    PubMed  Google Scholar 

  • Colonna-Romano S, Riccio A, Guida M, Defez R, Lamberti A, Iaccaiino M, Arnold W, Priefer U and Puhler A 1987 Tight linkage ofglnA and a putative regulatory gene inRhizobium leguminosarum. Nucl.Acids Res. 15, 1951–1964

    PubMed  Google Scholar 

  • Colonna-Romano S, Patriarca E J, Amar M, Bernard P, Manco G, Lamberti A, Iaccarino M and Defez R 1993 Uridylylation of the PII protein inRhizobium leguminosarum. Febs Letts. 330, 95–98.

    Google Scholar 

  • Contreras C, Drummond M, Bali A, Blanco G, Garcia E, Bush G, Kennedy C and Merrick M 1991 The product of the nitrogen fixation regulatory genenfrX ofAzotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encode byglnD in enteric bacteria. J.Bacteriol. 24, 7741–7749.

    Google Scholar 

  • Darrow R A, Crist D, Evans W R, Jones B L, Keister D L and Knotts R R 1981 Biochemical and physiological studies on the two glutamine synthetases of Rhizobium.In Current Perspectives in Nitrogen Fixation. Eds A H Gibson and W E Newton Australian Academy of Sciences, Canberra.

    Google Scholar 

  • De Bruijn F J, Rossbach S, Schneider M, Ratet P, Messmer S, Szeto W W, Ausubel F M and Schell J 1989Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J.Bacteriol. 171, 1673–1682.

    PubMed  Google Scholar 

  • De Zamaroczy M, Delorme F and Elmerich C 1990 Characterization of three different nitrogen-regulated promoter regions for the expression ofglnB andglnA inAzospirillum brasilense. Mol.Gen.Genet.224, 421–430.

    PubMed  Google Scholar 

  • De Zamaroczy M, Paquelin A and Emerick C 1993 Functional organization of theglnB-glnA cluster ofAzospirilium brasilense. J. Bacteriol. 175, 2507–2515.

    PubMed  Google Scholar 

  • Dean D and Jacobson M R 1992 Biochemical genetics of nitrogenase.In Biological Nitrogen Fixation. Eds. G Stacey, H J Evans and R Burris. Chapman & Hall, New York, pp 763–834.

    Google Scholar 

  • Defez R, Chiurazzi M, Manco G, Lamberti P, Riccio A, Lopes C, Colonna-Romnano S, Moreno S, Meza R, Espin G and Iaccarino M 1990 The glutamine synthetases ofRhizobium leguminosarum and their regulatory genes.In Nitrogen Fixation. Achievements and Objectives. Eds. P M Greshoff, J Roth, G Stacey and WE Newton, Chapman and Hall, New York, pp 715–716.

    Google Scholar 

  • Dusha L. Bakos A, Kondorosi A, de Bruijn F J and Schell J 1989 TheRhizobium meliloti early nodulation genes (nodABC) are nitrogen-regulated: isolation of a mutant strain with efficient nodulation capacity on alfalfa in the presence of ammonium. Mol.Gen.Genet.21, 89–96

    Google Scholar 

  • Espin G, Moreno S, Wild M, Meza R and Iaccarino M 1990 A previously unrecognized glutamine synthetase expressed inKlebsiella pneumoniae from theglnT locus ofRhizobium leguminosarum. Mol.Gen.Genet.223, 513–516.

    PubMed  Google Scholar 

  • Filser M, Moscatelli C, Lamberti A, Vincze E, Guida M, Salzano G and Iaccarino M 1986 Characterization and cloning of twoRhizobium leguminosarum genes coding for glutamine synthetase activities. J.Gen. Microbiol.132, 2561–2569.

    PubMed  Google Scholar 

  • Foor F, Reuveny Z and Magasanik B 1980 Regulation of the synthesis of glutamine synthetase by the PII protein inKlebsiella aerogenes Proc.Acad.Sci. USA 77, 2636–2640.

    Google Scholar 

  • Foster-Hartnett D and Kranz R G 1992 Analysis of the promoters and upstream sequences ofnifA1 andnifA2 inRhodobacter capsulatus — Activation requiresntrC but notrpoN. Mol.Microbiol.6, 1049–1060.

    PubMed  Google Scholar 

  • Foster-Harmett D, Cullen P J, Gabbert K K and Kranz R G 1993 Sequence, genetic, andlacZ fusion analyses of anifR3-ntrB-ntrC operon inRhodobacter capsulatus. Mol.Microbiol. 8, 903–914.

    PubMed  Google Scholar 

  • Fuchs R L and Keister D L 1980 Comparative properties of glutamine synthetase I and II inRhizobium andAgrobacterium spp. J. Bacteriol. 144, 641–648.

    PubMed  Google Scholar 

  • Garcia E and Rhee S G 1983 Cascade control ofEscherichia coli glutamine synthetase. J. Biol. Chem. 258, 2246–2253

    PubMed  Google Scholar 

  • Hallenbeck P C 1992 Mutations affecting nitrogenase switch-off inRhodobacter capsulatus. Biochim. Biophys. Acta 1118, 161–168.

    PubMed  Google Scholar 

  • Hawkins F K L, Kennedy C and Johnston A W B 1991 ARhizobium leguminosarum gene required for symbiotic nitrogen fixation, melanin synthesis and normal growth on certain growth media. J.Gen.Microbiol. 137, 1721–1728.

    Google Scholar 

  • He B, Choi K Y and Zalkin H 1993 Regulation ofEscherichia coli glnB, prsA andspeA by the purine repressor. J.Bacteriol. 175, 3598–3606.

    PubMed  Google Scholar 

  • Holtel H and Merrick M 1988 Identification of theKlebsiella pneumoniae glnB gene: nucleotide sequence of wild-type and mutant alleles. Mol.Gen.Genet. 215, 134–138.

    PubMed  Google Scholar 

  • Holtel A and Merrick M J 1989 TheKlebsiella pneumoniae PII protein (glnB gene product) is not absolutely required for nitrogen regulation and is not involved in NifL-mediatednif gene regulation. Mol.Gen.Genet. 217, 474–480.

    PubMed  Google Scholar 

  • Keener J and Kustu S 1988 Protein kinase and phosphoproteins phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: Roles of the conserved amino-terminal domain of NTRC. Proc.Natl.Acad.Sci.USA 85, 4976–4980.

    PubMed  Google Scholar 

  • Kennedy C and Toukdarian A 1987 Genetics of azotobacters: applications to nitrogen fixation and related aspects metabolism. Annu.Rev.Microbiol. 41, 227–248.

    PubMed  Google Scholar 

  • Klipp W, Masepohl B and Puhler A 1988 Identification and mapping of nitrogen fixation genes ofRhodobacter capsulatus: Duplication of anifA-nifB region. J.Bacteriol. 17, 693–699.

    Google Scholar 

  • Kranz R G, Pace W M and Caldicott I M 1990 Inactivation, sequence, andlacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes inRhodobacter capsulatus. J.Bacteriol. 172, 53–62.

    PubMed  Google Scholar 

  • Kranz R G and Foster-Hartnett D 1990 Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: oxygen- and nitrogen-responsive factors. Mol.Microbiol. 4, 1793–1800.

    PubMed  Google Scholar 

  • Kranz R G and Haselkorn R 1988 Ammonia-constitutive nitrogen fixation mutants ofRhodobacter capsulatus. Gene 71, 65–74.

    PubMed  Google Scholar 

  • Kustu S, Hirschman J, Burton D, Jelesko J and Meeks J C 1984 Covalent modification of bacterial glutamine synthetase: physiological significance. Mol.Gen.Genet. 197, 309–317.

    PubMed  Google Scholar 

  • Leonardo J M and Goldberg R B 1980 Regulation of nitrogen metabolism in glutamine auxotrophs ofKlebsiella pneumoniae. J.Bacteriol. 142, 99–110.

    PubMed  Google Scholar 

  • Liang Y Y, De Zamaroczy M, Arsene F, Paquelin A and Elmerich C 1992 Regulation of nitrogen fixation inAzospirillum brasilenseSp7: Involvement ofnifA, glnA andglnB gene products. FEMS 100, 113–120

    Google Scholar 

  • Luque F, Santero E, Medina J R and Tortolero M 1987 Mutants ofAzotobacter vinelandii altered in the regulation of nitrate assimulation. Arch.Microbiol. 148, 231–235.

    Google Scholar 

  • Magasanik B 1982 Genetic control in nitrogen assimilation in bacteria. Annu.Rev.Genet. 16, 135–168.

    PubMed  Google Scholar 

  • Magasanik B 1988 Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem.Sci. 13, 475–479

    PubMed  Google Scholar 

  • Martin G B, Thomashow M F and Chelm B K 1989Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. J.Bacteriol 171, 5638–5645.

    PubMed  Google Scholar 

  • Merrick M J 1992 Regulation of nitrogen fixation genes in free-living and symbiotic bacteria.In Biological Nitrogen Fixation. Eds. G Stacey, H J Evans and R H Burris. Chapman and Hall, New York, pp 835–876.

    Google Scholar 

  • Minchin S D, Austin S and Dixon R A 1988 The role of activator binding sites in transcriptional control of the divergently transcribednifF andnifLA promoters fromKlebsiella pneumoniae. Mol.Microbiol. 2, 433–442

    PubMed  Google Scholar 

  • Ninfa A J and Magasanik B 1986 Covalent modification of theglnG product, NR1, by theglnL product, NRII, regulates the transcription of theglnALG operon inEscherichia coli. Proc.Natl.Acad.Sci.USA 83, 5909–5913.

    PubMed  Google Scholar 

  • Ninneman O 1992 TheE. coli fis promoter is subject to stringent control and autoregulation. EMBO J. 11, 1075–1083.

    PubMed  Google Scholar 

  • Nixon B T, Ronson C W and Ausubel F M 1986 Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genesntrB andntrC. Proc.Natl.Acad.Sci.USA 83, 7850–7854

    PubMed  Google Scholar 

  • Pate J S and Dart P J 1961 Nodulation studies in legumes. Plant and Soil 15, 329–345.

    Google Scholar 

  • Patriarca E J, Chiurazzi M, Manco G, Riccio A, Lamberti A, De Paolis A, Rossi M, Defez R and Iaccarino M 1992 Activation of theRhizobium leguminosarum glnII gene by NtrC is dependent on upstream DNA sequences. Mol.Gen.Gen. 234, 337–345.

    Google Scholar 

  • Patriarca E J, Riccio A, Tate R, Colonna-Romano S, Iaccarino M amd Defez R 1994 The ntrBC genes ofRhizobium leguminosarum are part of a complex operon subject to negative autoregulation. Mol.Microbiol. (In press).

  • Pawlowski K, Klosse U and de Bruijn F J 1991 Characterization of a noveAzorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX involved in nitrogen fixation and metabolism. Mol.Gen.Genet 239, 124–138.A

    Google Scholar 

  • Popham D L, Szeto D, Keener J and Kustu S 1989 Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243, 629–635.

    PubMed  Google Scholar 

  • Reitzer L J and Magasanik B 1986 Transcription ofglnA inE. coli is stimulated by activator bound to sites far from the promoter. Cell 45, 785–792.

    PubMed  Google Scholar 

  • Reitzer L J and Magasanik B 1987 Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine.In Escherichia coli andSalmonella typhimurium. Cellular and Molecular Biology. Volume I Ed. F C Neidhardt. American Society for Microbiology, Washington DC. pp 302–320

    Google Scholar 

  • Rhee S G, Chock P B and Stadtman E R 1985 Nucleotidylations involved in the regulation of glutamine synthetase inEscherichia coli.In The Enzymology of Post-translational Modifications of Proteins. Volume 2. Eds. R B Freedman and H C Hawkins. Academic Press Inc., New York, pp 273.

    Google Scholar 

  • Rhee S G, Park S C and Koo J H 1985b The role of adenylyltransferase and uridylyltransferase in the regulation of glutamine synthetase inEscherichia coli. Cur.Top.Cell.Reg. 27, 221–232.

    Google Scholar 

  • Roberts G and Ludden P 1992 Nitrogen Fixation by Photosynthetic bacteria.In Nitrogen Fixation. Ed. G Stacey. Chapman and Hall, New York, pp 135–165.

    Google Scholar 

  • Santero E, Toukdarian A, Humphrey R and Kennedy C 1988 Identification and characterization of two nitrogen fixation regulatory regionsnifA andnfrX andAzotobacter vinelandii andAzotobacter chroococcum. Mol. Microbiol. 2, 303–314.

    PubMed  Google Scholar 

  • Shatters R G, Liu Y and Kahn M L 1993 Isolation and characterization of a novel glutamine synthetase fromRhizobium leguminosarum. J.Biol.Chem. 268, 469–475.

    PubMed  Google Scholar 

  • Sibold L, Henriquet M, Possot O and Aubert J.-P 1991 Nucleotide sequence ofnifH regions fromMethanobacterium ivanovii andMethanosarcina barkeri 227 and characterization ofglnB-like genes. Res.Microbiol. 142, 5–12.

    PubMed  Google Scholar 

  • Somerville J E and Kahn D 1983 Cloning of the glutamine synthetase I gene fromRhizobium meliloti J.Bacteriol. 156, 168–176.

    PubMed  Google Scholar 

  • Son H S and Rhee S G 1987 Cascade control ofEscherichia coli glutamine synthetase. Purification and properties of PII protein and nucleotide sequence of its structural gene. J.Biol.Chem. 262, 8609–8695.

    Google Scholar 

  • Stock J B, Ninfa A J and Stock A M 1989 Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol.Rev. 53, 450–49.

    PubMed  Google Scholar 

  • Streeter J 1988 Inhibition of legume nodule formation and nitrogen fixation by nitrate. Crit.Rev.Plant.Sci. 7, 1–23.

    Google Scholar 

  • Streicher S L, Bloom F R, Foor F, Levin M and Tyler B 1977Klebsiella pneumoniae andEscherichia coli mutants altered in nitrogen assimilation. Fed.Proc. 34, 300(Abstract).

    Google Scholar 

  • Toukdarian A and Kennedy C 1986 Regulation of nitrogen metabolism inAzotobacter vinelandii: isolation ofntr andglnA genes and construction ofntr mutants. EMBO J 5, 399–407.

    PubMed  Google Scholar 

  • Van Heeswijk W, Kuppinger O, Merrick M and Kahn D 1992 Localization of theglnD gene on a revised map of the 200-kilobase region of theEscherichia coli chromosome. J.Bacteriol. 174, 1702–1703.

    PubMed  Google Scholar 

  • Van Heeswijk W C, Rabenberg M, Westerhoff H V and Kahn D 1993 Genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen inEscherichia coli. Mol.Microbiol. 9.

  • Wang S P and Stacey G 1990 Ammonia regulation ofnod genes inBradyrhizobium japonicum Mol.Gen.Genet. 223, 329–331.

    PubMed  Google Scholar 

  • Weiss V and Magasanik B 1988 Phosphorylation of NR1 ofE coli. Proc.Natl.Acad.Sci.USA 85, 8919–8923.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, C., Doetsch, N., Meletzus, D. et al. Ammonium sensing in nitrogen fixing bacteria: Functions of theglnB andglnD gene products. Plant Soil 161, 43–57 (1994). https://doi.org/10.1007/BF02183084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183084

Key words

Navigation