Skip to main content
Log in

Host range, RFLP, and antigenic relationships betweenRhizobium fredii strains andRhizobium sp. NGR234

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Rhizobium fredii is a nitrogen-fixing symbiont from China that combines broad host range for nodulation of legume species with cultivar specificity for nodulation of soybean. We have compared 10R. fredii strains withRhizobium sp. NGR234, a well known broad host range strain from Papua New Guinea. NGR234 nodulated 16 of 18 tested lugume species, and nodules on 14 of the 16 fixed nitrogen. TheR. fredii strains were not distinguishable from one another. They nodulated 13 of the legumes, and in only nine cases were nodules effective. All legumes nodulated byR. fredii were included within the host range of NGR234. Restriction fragment length polymorphisms (RFLPs) were detected with four DNA hybridization probes: the regulatory and commonnod genes,nodDABC; the soybean cultivar specificity gene,nolC; the nitrogenase structural genes, nifKDH; and RFRS1, a repetitive sequence fromR. fredii USDA257. A fifth locus, corresponding to a second set of soybean cultivar specificity genes,nolBTUVWX, was monomorphic. Using antisera against whole cells of threeR. fredii strains and NGR234, we separated the 11 strains into four serogroups. The anti-NGR234 sera reacted with a singleR. fredii strain, USDA191. Only one serogroup, which included USDA192, USDA201, USDA217, and USDA257, lacked cross reactivity with any of the others. Although genetic and phenotypic differences amongR. fredii strains were as great as those between NGR234 andR. fredii, our results confirm that NGR234 has a distinctly wider host range thanR. fredii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RFLP:

restriction fragment length polymorphism

TBS:

tris-buffered saline

YEM:

yeast extract-mannitol

References

  • Appelbaum E R, Chartrain N, Thompson D, Johansen K, O'Connell M and McLoughlin T 1985 Genes ofRhizobium japonicum involved in development of nodules.In Nitrogen Fixation Research Progress. Ed H J Evans and P H Bottomley. pp 101–107. Martinus Nijhoff, Dordrecht, Netherlands.

    Google Scholar 

  • Appelbaum E R, Thompson D V, Idler K and Chartrain N 1988Rhizobium japonicum USDA 191 has twonodD genes that differ in primary structure and function. J. Bacteriol. 170, 12–20.

    PubMed  Google Scholar 

  • Balatti P A and Pueppke S G 1992 Identification of North American soybean lines that form nitrogen-fixing nodules withRhizobium fredii USDA257. Can. J. Plant Sci. 72, 49–55.

    Google Scholar 

  • Brom S, de los Santos A G, Girard M L, Dávila G, Palacios R and Romero D 1991 High-frequency rearrangements inRhizobium leguminosarum bv.phaseoli plasmids. J. Bacteriol. 173, 1344–1346.

    PubMed  Google Scholar 

  • Broughton W J, Heycke N, Meyer H and Pankhurst C E 1984 Plasmid-linkednif and “nod” genes in fastgrowing rhizobia that nodulateGlycine max, Psophocarpus tetragonolobus, andVigna unguiculata. Proc. Natl. Acad. Sci. USA 81, 3093–3097.

    Google Scholar 

  • Burnett W N 1981 Western Blotting: electrophoretic transfer of proteins from SDS-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112, 195–203.

    PubMed  Google Scholar 

  • Cannon F C, Riedel G E and Ausubel F M 1979 Overlapping sequences ofKlebsiella pneumoniae nif DNA cloned and characterised. Mol. Gen. Genet. 174, 59–66.

    PubMed  Google Scholar 

  • Chen W X, Yan G H and Li J L 1988 Numerical taxonomic study of fast-growing soybean rhizobia and a proposal thatRhizobium fredii be assigned toSinorhizobium gen. nov. Int. J. Syst. Bacteriol. 28, 392–397.

    Google Scholar 

  • Dénarié J, Debellé F and Rosenberg C 1992 Signalling and host range variation in nodulation. Annu Rev. Microbiol. 46, 497–531.

    PubMed  Google Scholar 

  • Devine T E 1985 Nodulation of soybean plant introduction lines with the fast-growing rhizobial strain USDA205. Crop Sci. 25, 354–356.

    Google Scholar 

  • DuTeau N M, Palmer A G and Atherly A G 1986 Fast-growingRhizobium fredii are poor nitrogen-fixing symbionts of soybean. Crop Sci. 26, 884–889.

    Google Scholar 

  • Egelhoff T T, Fisher R F, Jacobs T W, Mulligan J T and Long S R 1985. Nucleotide sequence ofRhizobium meliloti 1021 nodulation genes:nodD is read divergently fromnodABC. DNA 4, 241–248.

    PubMed  Google Scholar 

  • Hattori J and Johnson J A 1984 Fast-growingRhizobium japonicum that effectively nodulates several commercialGlycine max L. Merrill cultivars. Appl. Environ. Microbiol. 48, 234–235.

    Google Scholar 

  • Heron D S and Pueppke S G 1984 Mode of infection, nodulation specificity, and indigenous plasmids of 11 fast-growingRhizobium japonicum strains. J. Bacteriol. 160, 1061–1066.

    PubMed  Google Scholar 

  • Heron D S and Pueppke S G 1987 Regulation of nodulation in the soybean-Rhizobium symbiosis. Strain and cultivar variability. Plant Physiol. 84, 1391–1396.

    Google Scholar 

  • Heron D S, Érsek T, Krishnan H B and Pueppke S G 1989 Nodulation mutants ofRhizobium fredii USDA257. Mol. Plant-Microbe Interact. 2, 4–10.

    Google Scholar 

  • Israel D W, Mathis J N, Barbour W M and Elkan G H 1986 Symbiotic effectiveness and host-strain interactions ofRhizobium fredii USDA191 on different soybean cultivars. Appl. Environ. Microbiol. 51, 898–903.

    Google Scholar 

  • Jansen van Rensburg H, Strijdom B W and Otto C J 1983 Effective nodulation of soybeans by fast-growing strains ofRhizobium japonicum. S. Afr. J. Sci. 79, 251–252.

    Google Scholar 

  • Jarvis B D W, Downer H L and Young J P W 1992 Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy ofSinorhizobium andRhizobium and assignment toRhizobium fredii. Int. J. Syst. Bacteriol. 42, 93–96.

    PubMed  Google Scholar 

  • Jordan D C 1984 Family III. Rhizobiaceae Conn 1938.In Bergey's Manual of Determinative Bacteriology, Vol. 1. Ed. N R Krieg et al. pp 234–256. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Keyser H H and Cregan P B 1984 Interactions of selectedGlycine soja Sieb. & Zucc. genotypes with fast- and slow-growing soybean rhizobia. Crop Sci. 24, 1059–1062.

    Google Scholar 

  • Keyser H H and Griffin R H 1987 BeltsvilleRhizobium Culture Collection Catalogue. U.S. Dept. of Agriculture, Beltsville.

    Google Scholar 

  • Keyser H H, Bohlool B B, Hu T S and Weber D F 1982 Fast-growing rhizobia isolated from root nodules of soybean. Science 215, 1631–1632.

    Google Scholar 

  • Kirchner O 1895 Die Wurzelknöllchen der Sojabohne. Beitr. Biol. Pflanzen 7, 213–223.

    Google Scholar 

  • Krishnan H B and Pueppke S G 1991anolC, aRhizobium fredii gene involved in cultivar-specific nodulation of soybean, shares homology with a heat-shock gene. Mol. Microbiol. 5, 737–745.

    PubMed  Google Scholar 

  • Krishnan H B and Pueppke S G 1991b Repetitive sequences with homology toBradyrhizobium japonicum DNA and the T-DNA ofAgrobacterium rhizogenes are closely linked tonodABC ofRhizobium fredii USDA257. Mol. Plant-Microbe Interact. 4, 521–529.

    PubMed  Google Scholar 

  • Krishnan H B and Pueppke S G 1991c Sequence and analysis of thenodABC region ofRhizobium fredii USDA257, a nitrogen-fixing symbiont of soybean and other legumes. Mol. Plant-Microbe Interact. 4, 512–520.

    PubMed  Google Scholar 

  • Krishnan H B and Pueppke S G 1993 Characterization of RFRS9, a second member of theRhizobium fredii repetitive sequence family from the nitrogen fixing symbiontR. fredii USDA257. Appl. Environ. Microbiol. 59, 150–155.

    PubMed  Google Scholar 

  • Kuykendall L D, Saxena B, Devine T E and Udell S E 1992 Genetic diversity inBradyrhizobium japonicum Jordan 1982 and a proposal forBradyrhizobium elkanii sp. nov. Can. J. Microbiol. 38, 501–505.

    Google Scholar 

  • Lewin A, Rosenberg C, Meyer H, Wong C H, Nelson L, Manen J-F, Stanley J, Dowling D N, Dénarie J and Broughton W J 1987 Multiple host-specificity loci of the broad host-rangeRhizobium sp. NGR234, selected using the widely compatible legumeVigna unguiculata. Plant Molec. Biol. 8, 448–459.

    Google Scholar 

  • Martínez E, Romero D and Palacios R 1990 TheRhizobium genome. CRC Crit. Rev. Plant Sci. 9, 59–93.

    Google Scholar 

  • Meinhardt L W, Krishnan H B, Balatii P A and Pueppke S G 1993 Molecular cloning and characterization of sym plasmid locus that regulates cultivar-specific nodulation of soybean byRhizobium fredii USDA257. Mol. Microbiol. 7, 17–29.

    Google Scholar 

  • Morrison N A, Trinick M J and Rolfe B G 1986 Comparison of the host range of fast-growingR. japonicum strains with a fast-growing isolate from lablab. Plant and Soil 92, 313–317.

    Google Scholar 

  • Otten L, Canaday J, Gérard J-C, Fournier P, Crouzet P and Paulus F 1992 Evolution of agrobacteria and their Ti plasmids—a review. Mol. Plant-Microbe Interact. 4, 279–287.

    Google Scholar 

  • Perret X, Broughton W J and Brenner S 1991 Canonical ordered cosmid library of the symbiotic plasmid ofRhizobium species NGR234. Proc. Natl. Acad. Sci USA 88, 1923–1927.

    PubMed  Google Scholar 

  • Rastogi V K, Bromfield E S P, Whitwill S T and Barran L R 1992. A cryptic plasmid of indigenousRhizobium meliloti possesses reiteratednodC andnifE genes and undergoes DNA rearrangement. Can J. Microbiol 38, 563–568.

    Google Scholar 

  • Rodriguez-Quinones F, Banfalvi Z, Murphy P and Kondorosi A 1987 Interspecies homology of nodulation genes inRhizobium. Plant Molec. Biol. 8, 61–75.

    Google Scholar 

  • Romero D, Brom S, Martinez-Salazar J, de Lourdes Girard M, Palacios R and Dávila G 1991 Amplification and deletion of anod-nif region in the symbiotic plasmid ofRhizobium phaseoli. J. Bacteriol. 173, 2435–2441.

    PubMed  Google Scholar 

  • Sadowsky M J, Bohlool B B and Keyser H H 1987 Serological relatedness ofRhizobium fredii to other rhizobia and to bradyrhizobia. Appl. Environ. Microbiol. 53, 1785–1789.

    Google Scholar 

  • Scholla M H and Elkan G H 1984Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybean. Int. J. Syst. Bacteriol. 34, 484–486.

    Google Scholar 

  • Scholla M H, Moorefield J A and Elkan G H 1984 Deoxyribonucleic acid homology between fast-growing soybeannodulating bacteria and other rhizobia. Int. J. Syst. Bacteriol. 34, 283–286.

    Google Scholar 

  • Stanley J and Cervantes E 1991 Biology and genetics of the broad host rangeRhizobium sp. NGR234. J. Appl. Bacteriol. 70, 9–19.

    Google Scholar 

  • Stowers M D and Eaglesham A R J 1984 Physiological and symbiotic characteristics of fast-growingRhizobium japonicum. Plant and Soil 77, 3–14.

    Google Scholar 

  • Trinick M J 1980 Relationships amongst the fast-growing rhizobia ofLablab purpureus, Leucaena leucocephala, Mimosa spp.,Acacia farnesiana andSesbania grandiflora and their affinities with other rhizobial groups. J. Appl. Bacteriol. 49, 39–53.

    Google Scholar 

  • Vincent J M 1970 A Manual for the Practical Study of Root-nodule Bacteria. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Yanagi M and Yamasato K 1993 Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107, 115–120.

    PubMed  Google Scholar 

  • Zdor R E and Pueppke S G 1991 Nodulation competitiveness of Tn5-induced mutants ofRhizobium fredii USDA208 that are altered in motility and extracellular polysaccharide production. Can. J. Microbiol. 37, 52–58.

    Google Scholar 

  • Zhang X, Harper R, Karsisto M and Lindström K 1991 Diversity ofRhizobium bacteria isolated from the root nodules of leguminous trees. Int. J. Syst. Bacteriol. 41, 104–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, H.B., Pueppke, S.G. Host range, RFLP, and antigenic relationships betweenRhizobium fredii strains andRhizobium sp. NGR234. Plant Soil 161, 21–29 (1994). https://doi.org/10.1007/BF02183082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183082

Key words

Navigation