Skip to main content
Log in

Recent developments inRhizobium taxonomy

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Recent developments inRhizobium taxonomy are presented from a molecular and evolutionary point of view. Analyses of ribosomal RNA gene sequences provide a solid basis to infer phylogenies in the Rhizobiaceae family. These studies confirmed thatRhizobium andBradyrhizobium are only distantly related and showed thatRhizobium andBradyrhizobium are related to other groups of bacteria that are not plant symbionts.Rhizobium andAgrobacterium species are intermixed. Differences in plasmid content may explain to a good extent the different behavior ofRhizobium andAgrobacterium as symbionts or pathogens. Other approaches to identify and classify bacteria such as DNA-DNA hybridization, fatty acid analysis, RFLP and RPD-PCR techniques and phylogenies derived from other genes are in general agreement to the groupings derived by ribosomal sequences. Only a small proportion of nodulated legumes have been sampled for their symbionts and more knowledge is required on the systematics and taxonomy ofRhizobium andBradyrhizobium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen O N and Allen E K 1981 The Leguminosae. A Source Book of Characteristics Uses and Nodulation. The University of Wisconsin Press, USA.

    Google Scholar 

  • Bjourson A J, Stone C E and Cooper J E 1992 Combined subtraction hybridization and polymerase chain reaction amplification procedure for isolation of strain-specificRhizobium DNA sequences. Appl. Environ. Microbiol. 58, 2296–2301.

    PubMed  Google Scholar 

  • Brom S, Garciade los Santos A, Stepkowsky T, Flores M, Dávila G, Romero D and Palacios R 1992 Different plasmids ofRhizobium leguminosarum bv.phaseoli are required for optimal symbiotic performance. J. bacteriol. 174, 5183–5189.

    PubMed  Google Scholar 

  • Bull A T, Goodfellow M and Slater J H 1992 Biodiversity as a source of innovation in biotechnology. Annu. Rev. Microbiol. 46, 219–252.

    PubMed  Google Scholar 

  • De Bruijn F J 1992 Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes ofRhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58, 2180–2187.

    PubMed  Google Scholar 

  • Eardly B D, Materon L A, Smith N H, Johnson D A, Rumbaugh M D and Selander R K 1990 Genetic structure of natural populations of the nitrogen-fixing bacteriumRhizobium meliloti. Appl. Environ. Microbiol. 56, 187–194.

    PubMed  Google Scholar 

  • Eardly B D, Young J P W and Selander R K 1992 Phylogenetic position ofRhizobium sp. strain Or191, a symbiont of bothMedicago sativa andPhaseolus vulgaris, based on partial sequences of the 16S rRNA andnifH genes. Appl. Environ. Microbiol. 58, 1809–1815.

    PubMed  Google Scholar 

  • Flores M, González V, Pardo M A, Leija A, Martínez E, Romero D, Piñero D, Dávila G and Palacios R 1988 Genomic instability inRhizobium phaseoli. J. Bacteriol. 170, 1191–1196.

    PubMed  Google Scholar 

  • Gepts P 1990 Biochemical evidence bearing on the domestication ofPhaseolus (fabaceae) beans. Econ. Bot. 44, 28–38.

    Google Scholar 

  • Goethals K, Gao M, Tomekpe K, Van Montagu M and Holsters M 1989 CommonnodABC genes innod locus 1 ofAzorhizobium caulinodans: nucleotide sequence and plant inducible expression. Mol. Gen. Genet. 219, 289–298.

    PubMed  Google Scholar 

  • Graham P H, Sadowsky M J, Keyser H H, Barnet Y M, Bradley R S, Cooper J E, de Ley D J, Jarvis B D W, Roslycky E B, Strijdom B W and Young J P W 1991 Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41, 582–587.

    Google Scholar 

  • Graham P H, Viteri S E, Mackie F, Vargas A A T and Palacios A 1982 Variation in acid soil tolerance among strains ofRhizobium phaseoli. Field Crops Res. 5, 121–128.

    Google Scholar 

  • Hahn M and Hennecke H 1988 Cloning and mapping of a novel nodulation region fromBradyrhizobium japonicum by genetic complementation of a deletion mutant. Appl. Environ. Microbiol. 54, 55–61.

    Google Scholar 

  • Haugland R and Verma D P S 1981 Interspecific plasmid and genomic DNA sequence homologies and localization ofnif genes in effective and ineffective strains ofRhizobium japonicum. J. Mol. Appl. Genet. 1, 205–217.

    PubMed  Google Scholar 

  • Hennecke H, Kaluza K, Thöny B, Fuhrmann M, Ludwig W and Stackebrandt E 1985 Concurrent evolution of nitrogenase genes and 16S rRNA inRhizobium species and other nitrogen fixing bacteria. Arch. Microbiol. 142, 342–348.

    Google Scholar 

  • Hooykaas P J J, den Dulk-Ras H, Regensburg-Twink A J G, van Brussel A A and Schilperoort R A 1985 Expression of aRhizobium phaseoli sym plasmid inR. trifolii andAgrobacterium tumefaciens: incompatibility with aR. trifolii sym plasmids. Plasmid. 14, 47–52.

    PubMed  Google Scholar 

  • Hooykaas P J J, Klapwijk P M, Nuti M P, Schilperoort R A and Rorsch A 1977 Transfer of theAgrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and toRhizobium ex planta. J. Gen. Microbiol. 98, 477–484.

    Google Scholar 

  • Hooykaas P J J, Snijdewint F G M and Schilperoort R A 1982 Identification of the Sym plasmid ofRhizobium leguminosarum strain 1001 and its transfer to and expression in other rhizobia andAgrobacterium tumefaciens. Plasmid 8, 73–82.

    PubMed  Google Scholar 

  • Hynes M F and McGregor N F 1990 Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules byRhizobium leguminosarum. Mol. Microbiol. 4, 567–574.

    PubMed  Google Scholar 

  • Judd A K, Schneider M, Sadowsky M J and de Bruijn F J 1993 Use of repetitive sequences and the polymerase chain reaction technique to classify genetically relatedBradyrhizobium japonicum serocluster 123 strains. Appl. Environ. Microbiol. 59, 1702–1708.

    PubMed  Google Scholar 

  • Kaijalainen S and Lindström K 1989 Restriction fragment length polymorphism analysis ofRhizobium galegae strains. J. Bacteriol. 171, 5561–5566.

    PubMed  Google Scholar 

  • Kersters K and de Ley J 1984Agrobacterium.In Bergey's Manual of Systematic Bacteriology. Eds. N R Kreig and J Holt. pp 244–254. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Kinkle B K, Sadowsky M J, Schmidt E L and Koskinen W C 1993 Plasmids pJP4 and r68.45 can be transferred between populations of Bradyrhizobia in nonsterile soil. Appl. Environ. Microbiol. 59, 1762–1766.

    Google Scholar 

  • Kondorosi A, Kondorosi E, Pankhurst C E, Broughton W J and Banfalvi Z 1982 Mobilization of aRhizobium meliloti megaplasmid carrying nodulation and nitrogen fixation genes into other rhizobia andAgrobacterium. Mol. Gen. Genet. 188, 433–439.

    Google Scholar 

  • Laguerre G, Fernández M P, Edel V, Normand P and Amarger N 1993 Genomic heterogeneity among FrenchRhizobium strains isolated fromPhaseolus vulgaris L. Int. J. Syst. Bacteriol. 43, 761–767.

    PubMed  Google Scholar 

  • Ludwig W, Kirchhof G, Klugbauer N, Weizenegger M, Betzl D, Ehrmann M, Hertel C, Jilg S, Tatzel R, Zitzelsberger H, Liebl S, Hockberger M, Shah J, Lane D, Wallnöfer P R and Scheifer K H 1992 Complete 23S ribosomal RNA sequences of gram-positive bacteria with a low DNA G+C content. System. Appl. Microbiol. 15, 487–501.

    Google Scholar 

  • Martínez E, Palacios R and Sánchez F 1987 Nitrogen-fixing nodules induced byAgrobacterium tumefaciens harboringRhizobium phaseoli plasmids. J. Bacteriol. 169, 2828–2834.

    PubMed  Google Scholar 

  • Martínez E, Pardo M A, Palacios R and Cevallos M A 1985 Reiteration of nitrogen fixation gene sequences and specificity ofRhizobium in nodulation and nitrogen fixation inPhaseolus vulgaris. J. Gen. Microbiol. 131, 1779–1786.

    Google Scholar 

  • Martínez E, Poupot R, Promé J C, Pardo M A, Segovia L, Truchet G and Dénarié J 1993 Chemical signaling ofRhizobium nodulating bean.In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton. pp 171–175. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Martínez E, Romero D and Palacios R 1990 TheRhizobium genome. Crit. Rev. Plant Sci. 9, 59–93.

    Google Scholar 

  • Martínez-Romero E and Rosenblueth M 1990 Increased bean (Phaseolus vulgaris L.) nodulation competitiveness of genetically modifiedRhizobium strains. Appl. Environ. Microbiol. 56, 2384–2388.

    Google Scholar 

  • Martínez-Romero E, Segovia L, Martins Mercante F, Franco A A, Graham P and Pardo M A 1991Rhizobium tropici, a novel species nodulatingPhaseolus vulgaris L. beans andLeucaena sp. trees. Int. J. Syst. Bacteriol. 41, 417–426.

    PubMed  Google Scholar 

  • Nelson K, Whittam T S and Selander R K 1991 Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations ofSalmonella andEscherichia coli. Proc. Natl. Acad. Sci. USA, 88, 6667–6671.

    PubMed  Google Scholar 

  • Norris D O 1956 Legumes and theRhizobium symbiosis. Empire J. Experimental Agric. 24, 246–270.

    Google Scholar 

  • Ochman H and Wilson A C 1987 Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26, 74–86.

    PubMed  Google Scholar 

  • Pardo M A, Lagúnez J, Miranda J and Martínez E 1994 Nodulating ability ofRhizobium tropici is conditioned by a plasmid-encoded citrate synthase. Mol. Microbiol. 11, 315–321.

    PubMed  Google Scholar 

  • Piñero D, Martínez E and Selander R K 1988 Genetic diversity and relationships among isolates ofRhizobium leguminosarum biovarphaseoli. Appl. Environ. Microbiol. 54, 2825–2832.

    PubMed  Google Scholar 

  • Saitou N and Nei M 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  Google Scholar 

  • Sawada H and Ieki H 1992 Phenotypic characteristics of the genusAgrobacterium. Ann. Phytopath. Soc. Japan 58, 37–45.

    Google Scholar 

  • Sawada H, Ieki H, Oyaizu H and Matsumoto S 1993 Proposal for rejection ofAgrobacterium tumefaciens and revised descriptions for the genusAgrobacterium and forAgrobacterium radiobacter andAgrobacterium rhizogenes. Int. J. Syst. Bacteriol. 43, 694–702.

    PubMed  Google Scholar 

  • Schleifer K H and Stackebrandt E 1983 Molecular systematics of prokaryotes. Annu. Rev. Microbiol. 37, 143–187.

    PubMed  Google Scholar 

  • Segovia L, Piñero D, Palacios R and Martínez-Romero 1991 Genetic structure of a soil population of nonsymbioticRhizobium leguminosarum. Appl. Environ. Microbiol. 57, 426–433.

    PubMed  Google Scholar 

  • Segovia L, Young J P W and Martínez-Romero E 1993 Reclassification of AmericanRhizobium leguminosarum biovarphaseoli type I strains asRhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43, 374–377.

    PubMed  Google Scholar 

  • Selander R K, Caugant D A, Ochman H, Musser J M, Gilmour M N and Whittam T S 1986 Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51, 873–884.

    PubMed  Google Scholar 

  • Souza V, Nguyen T T, Hudson R R, Piñero D and Lenski R E 1992 Hierarchical analysis of linkage disequilibrium inRhizobium populations: evidence of sex? Proc. Natl. Acad. Sci. USA 89, 8389–8393.

    PubMed  Google Scholar 

  • Taboada H, Encarnación S, Vargas M C, Narváez V, Mora Y, Martínez E and Mora J 1993 Glutamine synthetase II as a biological marker of the Rhizobiaceae family.In New Horizons in Nitrogen Fixation. Eds. R. Palacios, J Mora and W E Newton. p. 657. Kluwer Academic Publishers. Dordrecht.

    Google Scholar 

  • Torsvik V, Goksoyr J and Daae F L 1990 High diversity in DNA of soil bacteria, Appl. Environ. Microbiol. 56, 782–787.

    PubMed  Google Scholar 

  • Truchet G, Rosenberg C, Vasse J, Julliot J S, Camut S and Dénarié J 1984 Transfer ofRhizobium meliloti pSym genes intoAgrobacterium tumefaciens: host-specific nodulation by atypical infection. J. Bacteriol. 157, 134–142.

    PubMed  Google Scholar 

  • Van brussel A A N, Tak T, Wetselaar A, Pees E and Wijffelman C A 1982 Small leguminosae as test plants for nodulation ofRhizobium leguminosarum and other rhizobia and agrobacteria harbouring a leguminosarum sym plasmid. Plant. Sci. Lett. 27, 317–325.

    Google Scholar 

  • Wheatcroft R and Watson R J 1988 A positive strain identification method forRhizobium meliloti. Appl. Environ. Microbiol. 54, 574–576.

    Google Scholar 

  • Willems A and Collins M D 1992 Evidence for a close genealogical relationship betweenAfipia, the casual organism of cat scratch disease,Bradyrhizobium japonicum andBlastobacter denitrificans. FEMS Microbiol. Lett. 96, 241–246.

    Google Scholar 

  • Willems A and Collins M D 1993 Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 43, 305–313.

    PubMed  Google Scholar 

  • Woese C R 1987 Bacterial evolution. Microbiol. Rev. 51, 221–271.

    PubMed  Google Scholar 

  • Yanagi M and Yamasato K 1993 Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107, 115–120.

    PubMed  Google Scholar 

  • Young J P W 1992 Phylogenetic classification of nitrogen-fixing organismsIn Biological Nitrogen Fixation. Eds. G. Stacey, R H Burris and J H Evans. pp 43–86. Chapman and Hall, New York.

    Google Scholar 

  • Young J P W 1993 Molecular phylogeny of rhizobia and their relatives.In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton. pp 587–592, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Young J P W, Downer H L and Eardly B D 1991 Phylogeny of the phototrophicRhizobium strain BTail by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173, 2271–2277.

    PubMed  Google Scholar 

  • Young P, Martínez E, Barnet Y, Cooper J and Lindström K 1993 Report from the taxonomy meeting, subcommittee onAgrobacterium andRhizobium.In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton. pp 777–778. Kluwer Academic Publishers. Dordrecht.

    Google Scholar 

  • Zhang X, Harper R, Karsisto M and Lindström K 1991 Diversity ofRhizobium bacteria isolated from the root nodules of leguminous trees. Int. J. Syst. Bacteriol. 41, 104–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Romero, E. Recent developments inRhizobium taxonomy. Plant Soil 161, 11–20 (1994). https://doi.org/10.1007/BF02183081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183081

Key words

Navigation