Plant and Soil

, Volume 170, Issue 1, pp 209–231 | Cite as

How do earthworms affect microfloral and faunal community diversity?

  • George G. Brown
Soil Faunal Relationship


Much of the work regarding earthworm effects on other organisms has focused on the functional significance of microbial-earthworm interactions, and little is known on the effects of earthworms on microfloral and faunal diversity. Earthworms can affect soil microflora and fauna populations directly and indirectly by three main mechanisms: (1) comminution, burrowing and casting; (2) grazing; (3) dispersal. These activities change the soil's physico-chemical and biological status and may cause drastic shifts in the density, diversity, structure and activity of microbial and faunal communities within the drilosphere. Certain organisms and species may be enhanced, reduced or not be affected at all depending on their ability to adapt to the particular conditions of different earthworm drilospheres. A large host of factors (including CaCO3, enzymes, mucus and antimicrobial substances) influence the ability of preferentially or randomly ingested organisms to survive (or not) passage through the earthworm gut, and their resultant capacity to recover and proliferate (or not) in earthworm casts. Small organisms, particularly microflora and microfauna, with limited ability to move within the soil, may benefit from the (comparatively) long ranging movements of earthworms. Microflora and smaller fauna appear to be particularly sensitive to earthworm activities, and priming effects enhancing nutrient release, particularly in casts, are common. Larger fauna such as microarthropods, enchytraeids and Isopods may be enhanced under some conditions (e.g., in earthworm middens), but in other cases earthworm activity may lead to a decrease in their populations due to competition for food (microbes and organic materials), and spatial and temporal changes in food abundance. Nevertheless, considering the presently available data, the beneficial interactions of earthworms and microflora and fauna appear to far outweigh the potential negative effects. However, much is still unknown regarding the interactions of earthworms of different ecological categories on the diversity and function of microfloral and faunal communities, and much more interdisciplinary research is needed to assess the potential role of earthworms in regulating the diversity of microflora and fauna in soil systems and the potentially beneficial or harmful effects this regulation may have on ecosystem function and plant growth in different ecosystems.

Key words

diversity earthworms soil fauna soil microflora soil processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldag K and Graff O 1975 N-fraktitionen in Regenwürmlosung und deren Urprungsboden. Pedobiologia 15, 151–153.Google Scholar
  2. Anderson J M 1987 Interactions between invertebrates and microorganisms: Noise or necessity for soil processes?In Ecology of microbial communities. Eds. M Fletcher, T R G Gray and J G Jones. pp 125–145. Cambridge University Press, Cambridge, UK.Google Scholar
  3. Atlavinyté O and Pociené C 1973 The effect of earthworms and their activity on the amount of algae in the soil. Pedobiologia 13, 445–455.Google Scholar
  4. Ausmus B S 1977 Regulation of wood decomposition rates by arthropod and annelid populations.In Soil Organisms as Components of Ecosystems. Eds. U Lohm and T Persson. pp 180–192. Ecological Bulletins 25, Stockholm.Google Scholar
  5. Bamforth S S 1988 Interactions between protozoa and other organisms. Agric. Ecosyst. Environ. 24, 229–234.Google Scholar
  6. Barois I 1987 Interactions entre les vers de terre (Oligochaeta) tropicaux géophages et la microflore pour l'exploitation de la matiere organique du sol. Travaux des chercheurs de la station de Lamto (Côte d'Ivoire) 7.152 p.Google Scholar
  7. Barois I 1992 Mucus production and microbial activity in the gut of two species ofArnynthas (Megascolecidae) from cold and warm tropical climates. Soil Biol. Biochem. 24, 1507–1510.Google Scholar
  8. Barois I and Lavelle P 1986 Changes in respiration rate and some physicoshemical properties of a tropical soil during transit throughPontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol. Biochem. 18, 539–541.Google Scholar
  9. Barois J, Verdier B, Kaiser P, Mariotti A, Rangel P and Lavelle P 1987 Influence of the tropical earthwormPontoscolex corethrurus (Glossoscolecidae) on the fixation and mineralization of nitrogen.In On Earthworms. Eds. A M B Pagliai and P Omodeo. pp 151–158. Mucchi Editore, Modena, Italy.Google Scholar
  10. Bassalik K 1913 Über Silikatzersetzung durch Bodenbakterien. Z. GaerungsPhys. 2, 1–32.Google Scholar
  11. Bayoumi B M 1978 Significance of the microhabitat on the distribution of oribatid mites in oak-hornbeam mixed forest. Opusc. Zool. 15, 51–59.Google Scholar
  12. Beare M H, Parmelee R W, Hendrix P F, Cheng W, Coleman D C and Crossley D AJr 1992 Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol. Monogr. 62, 564–591.Google Scholar
  13. Beare M H, Coleman D C, Crossley D A Jr, Hendrix P F and Odum E P 1995 A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil 170.Google Scholar
  14. Bhatnagar T 1975 Lombriciens et humification: Un aspect noveau de l'incorporation microbienne d'azote induite par les vers de terre.In Humification et Biodégradation. Eds. G Kilbertius, Reisinger, A Mourey and J A Cda Fonseca. pp 169–182. Pierron, Sarreguemines, France.Google Scholar
  15. Blackshaw R P 1990 Studies onArtioposthia triangulata (Dendy) (Tricladia: Terricola), a predator of earthworms. Ann. Appl. Biol. 116, 169–176.Google Scholar
  16. Bouché M B 1977 Strategies lombriciennes.In Soil Organisms as Components of Ecosystems. Eds. U Lohm and T Persson. pp 122–132. Ecological Bulletins 25, Stockholm.Google Scholar
  17. Contreras E 1980 Studies on the intestinal actinomycete flora ofEisenia lucens (Annelida, Oligochaeta). Pedobiologia 20, 411–416.Google Scholar
  18. Cooke A 1983 The effects of fungi on food selection byLumbricus terrestris L.In Earthworm Ecology: From Darwin to Vermiculture. Ed. J E Satchell. pp 365–373, Chapman and Hall, New York.Google Scholar
  19. Dales R P and Kalaç 1992 Phagocytic defence by the earthwormEisenia foetida against certain pathogenic bacteria. Comp. Biochem. Physiol. 101A, 487–490.Google Scholar
  20. Daniel O and Anderson J M 1992 Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthwormLumbricus rubellus Hoffmeister. Soil Biol. Biochem. 24, 465–470.Google Scholar
  21. Darwin C R 1881 The Formation of Vegetable Mould through the Action of Worms with Observation on their Habits. Murray, London. 298p.Google Scholar
  22. Dash M C, Mishra P C and Behera N 1979 Fungal feeding by a tropical earthworm. Trop. Ecol. 20, 9–12.Google Scholar
  23. Dash M C, Senapati B K and Mishra C C 1980 Nematode feeding by tropical earthworms. Oikos 34, 322–325.Google Scholar
  24. Dash H K, Beura B N and Dash M C 1986 Gut load, transit time, gut microflora and turnover of soil, plant and fungal material by some tropical earthworms. Pedobiologia 29, 13–20.Google Scholar
  25. Domsch K H and Banse H J 1972 Mykologische Untersuchungen an Regenwürmexkrementen. Soil Biol. Biochem. 4, 31–38.Google Scholar
  26. Doube B M, Ryder M H, Davoren C W and Meyer T 1994a Earthworms: A down-under delivery service for biocontrol agents of root disease. Acta Zool. Fenn. (In press).Google Scholar
  27. Doube B M, Ryder M H, Davoren C W and Stephens P M 1994b Enhanced root nodulation of subterranean clover (Trifolium subterraneum) byRhizobium leguminosarium biovartrifolii in the presence of the earthwormAporrectodea trapezoides (Lumbricidae). Biol. Fertil. Soils (In press).Google Scholar
  28. Dózsa-Farkas K 1978 Die ökologische bedeutung des mikrohabitates für das vorkommen einiger enchytraeiden-arten. Pedobiologia 18, 366–372.Google Scholar
  29. Edwards C A and Lofty J R 1977 Biology of Earthworms. 2nd ed. Chapman and Hall, London. 333p.Google Scholar
  30. Edwards C A and Lofty J R 1980 Effects of earthworm inoculations upon the root growth of direct drilled cereals. J. Appl. Ecol. 17, 533–543.Google Scholar
  31. Edwards C A and Fletcher K E 1988 Interactions between earthworms and microorganisms in organic-matter breakdown. Agric. Ecosyst. Environ. 24, 235–247.Google Scholar
  32. Edwards W M, Shipitalo M J, Owens L B and Norton L D 1990 Effects ofLumbricus terrestris L. burrows on hydrology of continuous no-till corn filelds. Geoderma 46, 73–84.Google Scholar
  33. Ellenby C 1945 Influence of earthworms on larval emergence in the potato-root eelworm,Heterodra rostochiensis Wollenweber. Ann. Appl. Biol. 31, 332–339.Google Scholar
  34. Elliott P W, Knight D and Anderson J M 1990 Denitrification in earthworm casts and soil from pastures under different fertilizer and drainage regimes. Soil Biol. Biochem. 22, 601–605.Google Scholar
  35. Flack F M and Hartenstein R 1984 Growth of the earthwormEisenia foetida on microorganisms and cellulose. Soil Biol. Biochem. 16, 491–495.Google Scholar
  36. Gange A 1993 Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem. 25, 1021–1026.Google Scholar
  37. Gonzalez C L 1990 Determinación de la influencia dePontoscolex corethrurus (Oligochaeta) sobre las poblaciones microbianas presentes en un sembradio de maiz de la region de Gomez Farias, Tamaulipas. Thesis, Universidad Nacional Autonoma de Mexico, Los Reyes Iztacala, Mexico. 108p.Google Scholar
  38. Górny M 1984 Studies on the relationship between enchytraeids and earthworms.In Soil Biology and Conservation of the Biosphere. Vol 2. Ed. J Szegi. pp 769–776. Academiai Kiado, Budapest.Google Scholar
  39. Graff O and Makeschin F 1983 Influence of earthworm upon nutrient uptake, yield and protein content of plants.In Proceedings of the International Symposium on Agricultural and Environmental Prospects in Earthworm Farming. Eds. U Tomati and A Grappelli. pp 39–4G5. Tipolitografia Euromodena. Modena, Italy.Google Scholar
  40. Gunnarsson T and Rundgren S 1986 Nematode infestation and hatching failure of lumbricid cocoons in acidified and polluted soils. Pedobiologia 29, 165–173.Google Scholar
  41. Hamilton W E and Sillman D Y 1989 Influence of earthworm middens on the distribution of soil microarthropods. Biol. Fertil. Soils 8, 279–284.Google Scholar
  42. Hampson M C and Coombes J W 1989 Pathogenesis ofSynchytrium endobioticum VII: Earthworms as vectors of wart disease of potato. Plant and Soil 116, 147–150.Google Scholar
  43. Harinikumar K M, Bagyaraj D J and Kale R D 1991 Vesicular arbuscular mycorrhizal propagules in earthworm cast.In Advances in Management and Conservation of Soil Fauna. Eds. G K Veeresh, D Rajagopal and C A Viraktamath. pp 605–610. Oxford and IBH, New Delhi.Google Scholar
  44. Hartenstein F, Hartenstein E and Hartenstein R 1981 Gut load and transit time in the earthwormEisenia foetida. Pedobiologia 22, 5–20.Google Scholar
  45. Hartenstein R and Amico L 1983 Production and carrying capacity for the earthwormLumbricus terrestris in culture. Soil Biol. Biochem. 15, 51–54.Google Scholar
  46. Hassett D J, Bisesi M S and Hartenstein R 1988 Earthworm peroxidase: Distribution, microbicidal action and molecular weight. Soil Biol. Biochem. 20, 887–890.Google Scholar
  47. Haukka J K 1987 Growth and survival ofEisenia fetida (Sav.) (Oligochaeta: Lumbricidae) in relation to temperature, moisture and presence ofEnchytraeus albidus (Henle) (Enchytraeidae). Biol. Fertil. Soils 3, 99–102.Google Scholar
  48. Hendriksen N B 1991 Gut load and food-retention time in the earthwormsLumbricus festivus andL. castaneus: A field study. Biol. Fertil. Soils 11, 170–173.Google Scholar
  49. Hendriksen N B 1994 Effects of detrivore earthworms on dispersal and survival of the bacteriumAeromonas hydrophila. Acta Zool. Fenn. (In press).Google Scholar
  50. Henschke R B, Nucken E and Schmidt F R J 1989 Fate and dispersal of recombinant bacteria in a soil microcosm containing the earthwormLumbricus terrestris. Biol. Fertil. Soils 7, 374–376.Google Scholar
  51. Hirst J M and Stedman O J 1962 The epidemiology of apple scab (Venturia inaequalis (Cke.) Wint.). Ann. Appl. Biol. 50, 551–567.Google Scholar
  52. Hoffmann J A and Purdy L H 1964 Germination of dwarf bunt teliospores after ingestion by earthworms. Phytopathology 54, 878–879.Google Scholar
  53. Hopp H 1973 What every gardner should know about earthworms. Garden Way Publ. Co., Charlotte, Vermont. 39p.Google Scholar
  54. Hossein E A, Ravasz K, Zicsi A, Contreras E and Szabó I M 1991 Über das vorkommen und die bedetung von nocardioform actinomyceten im darm von regenwürmern.In Advances in Management and Conservation of Soil Fauna. Eds. G K Veeresh, D Rajagopal and C A Viraktamath. pp 585–590 Oxford and IBH, New Delhi.Google Scholar
  55. Huss M J 1989 Dispersal of cellular slime molds by two soil invertebrates. Mycologia 81, 677–682.Google Scholar
  56. Ingham R E, Trophymow J A, Ingham E R and Coleman D C 1985 Interactions of bacteria, fungi and their nematode grazers: Effects on nutrient cycling and plant growth. Ecol. Monogr. 55, 119–140.Google Scholar
  57. Jolly J M, Lappin-Scott H M, Anderson J M and Clegg C D 1993 Scanning electron microscopy of the gut microflora of two earthworms:Lumbricus terrestris andOctolasion cyaneum. Microbial. Ecol. 26, 235–245.Google Scholar
  58. Jones K and Wilson R E 1978 The fate of nitrogen fixed by a free-living blue-green alga.In Environmental Role of Nitrogen-fixing Blue-green Algae and Asymbiotic Bacteria. Ed. U Granhall. pp 158–163. Ecological Bulletins 26, Stockholm.Google Scholar
  59. Joschko M, Diestel H and Larink O 1989 Assesment of earthworm burrowing efficiency in compacted soil by a combination of morphological and soil physical measurements. Biol. Fertil. Soils 8, 191–196.Google Scholar
  60. Judas M 1989 Predator pressure on earthworms: Field experiments in a beechwood. Pedobiologia 33, 339–354.Google Scholar
  61. Kennel W 1990 The role of the earthwormLumbricus terrestris in integrated fruit production. Acta Hort. 285, 149–156.Google Scholar
  62. Keogh R G and Christensen M J 1976 Influence of passage throughLumbricus rubellus Hoffmeister earthworms on viability ofPithomyces chartarum. (Berk. and Curt.) M B Ellis spores. N. Z. J. Agric. Res. 19, 255–256.Google Scholar
  63. Kirk V M 1981 Earthworm burrows as oviposition sites for western and northern corn rootworms (Diabrotica: Coleoptera). J. Kansas Entom. Soc. 54, 68–74.Google Scholar
  64. Kirkham M B 1982 Water and air conductance in soil with earthworms: An electrical-analogue study. Pedobiologia 23, 367–371.Google Scholar
  65. Klaasen H L B M, Koopman J P, Poelma F G J and Beynen A C 1992 Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 88, 165–180.Google Scholar
  66. Kladivko E J, Mackay A and Bradford J M 1986 Earthworms as a factor in the reduction of soil crusting. Soil Sci. Soc. Am. J. 50, 191–196.Google Scholar
  67. Kozlovskaya L S and Zhdannikova E N 1961 The combined activity of earthworms and the microflora in forest soils. Doklady Akademii Nauk, SSSR 139, 574–576.Google Scholar
  68. Krishnamoorthy R V and Vajranabhaiah S N 1986 Biological activity of earthworm casts: An assesment of plant growth promoter levels in the casts. Proc. Indian Acad. Sci. (Anim. Sci.) 95, 341–351.Google Scholar
  69. Kristufek V, Pizl V and Szabo I M 1990 Composition of the intestinal streptomycete community of earthworms (Lumbricidae).In Microbiology in Poecilotherms. Ed. R Lessel. pp 137–140. Elsevier, Amsterdam.Google Scholar
  70. Kristufek V, Ravasz K and Pizl V 1992 Changes in density of bacteria and microfungi during gut transit inLurribricus rubellus andAporrectodea caliginosa (Oligochaeta: Lumbricidae). Soil Biol. Biochem. 24, 1499–1500.Google Scholar
  71. Kristufek V, Ravasz K and Pizl V 1993 Actinomycete communities in earthworm guts and surrounding soil. Pedobiologia 37, 379–384.Google Scholar
  72. Lagerlöf J and Lofs-Holmin A 1987 Relationships between earthworms and soil mesofauna during decomposition of crop residues.In Soil Fauna and Soil Fertility. Ed. B R Striganova. pp 377–381. Nauka, Moscow.Google Scholar
  73. Laing J E, Heraty J M and Corrigan J E 1986 Leaf burial by the earthworm,Lumbricus terrestris (Oligochaeta: Lumbricidae), as a major factor in the population dynamics ofPhyllonorycter blancardella (Lepidoptera: Gracillariidae) and its parasites. Env. Entom. 15, 321–326.Google Scholar
  74. Langmaid K K 1964 Some effects of earthworm invasion in virgin Podzols. Can. J. Soil Sci. 44, 34–37.Google Scholar
  75. Lavelle P 1981 Strategies de reproduction chez les vers de terre. Acta Oecologica Oecol. Gener. 2, 117–133.Google Scholar
  76. Lavelle P 1987 Interactions, hiérarchies et régulations dans le sol: À la recherche d'une nouvelle approche conceptuelle. Rev. Ecol. Biol. Sol 24, 219–229.Google Scholar
  77. Lavelle P 1988 Earthworms and the soil system. Biol. Fertil. Soils 6, 237–251.Google Scholar
  78. Lavelle P, Zaidi Z and R Schaeffer 1983 Interactions between earthworms, soil organic matter and microflora in an African savanna soil.In New Trends in Soil Biology. Eds. P Lebrun, H M Andre, Ade Medts, C Grégoire-Wibo and G Wauthy. pp 253–259. Dieu-Brichart, Louvain-la-Neuve, Belgium.Google Scholar
  79. Lavelle P, Barois I, Cruz I, Fragoso C, Hernandez A, Pineda A and Rangel P 1987 Adaptive strategies ofPontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol. Fertil. Soils 5, 188–194.Google Scholar
  80. Lavelle P, Barois I, Martin A, Zaidi Z and Schaefer R 1989 Management of earthworm populations in agro-ecosystems: A possible way to maintain soil quality?In Ecology of Arable Land: Perspectives and Challenges. Eds. M Clarholm and L Bergstrom. pp 109–122. Kluwer Academic Publishers, London.Google Scholar
  81. Lavelle P, Melendez G, Pashanasi B and Schaefer R 1992a Nitrogen mineralization and reorganization in casts of the geophagous tropical earthwormPontoscolex corethrurus (Glossoscolecidae). Biol. Fertil. Soils 14, 49–53.Google Scholar
  82. Lavelle P, Blanchart E, Martin A, Spain A V and Martin S 1992b Impact of soil fauna on the properties of soils in the humid tropics.In Myths and Science of Soils in the Tropics. Eds. P A Sanchez and R Lal. pp 157–185 SSSA Spec. Publ. 29, Madison, WI.Google Scholar
  83. Lavelle P, Blanchart E, Martin A, Martin S, Spain A V, Toutain F, Barois I and Schaefer R 1993 A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150.Google Scholar
  84. Lavelle P, Gilot C, Fragoso C and Pashanasi B 1994 Soil fauna and sustainable land use in the humid tropics.In Soil Resilience and Sustainable Land Use. Eds. D J Greenland and I Szabolcs. pp 291–308. CAB International, Wallingford, UK.Google Scholar
  85. Lavelle P, Lattaud C, Trigo D and Barois I 1995 Mutualism and biodiversity in soils. Plant and Soil 170.Google Scholar
  86. Lee K E 1983 Soil animals and pedological processes.In Soils: An Australian viewpoint. CSIRO Divison of Soils. pp 629–644. Academic Press, London.Google Scholar
  87. Lee K E 1985 Earthworms: Their ecology and relationships with soils and land use. Academic Press, London. 411p.Google Scholar
  88. Lee K E and Foster R C 1991 Soil fauna and soil structure. Aust. J. Soil Res. 29, 745–775.Google Scholar
  89. Lofty J R 1974 Oligochaetes.In Biology of Plant Litter Decomposition. Vol 2. Eds. C H Dickinson and G J F Pugh. pp 467–488. Academic Press, New York.Google Scholar
  90. Lopez-Hernandez D, Lavelle P, Fardeau J C and Niño M 1993 Phosphorus transformations in two P-sorption contrasting tropical soils during transit throughPontoscolex corethrurus (Glossoscolecidae: Oligochaeta). Soil Biol. Biochem. 25, 789–792.Google Scholar
  91. Loquet M, Bhatnagar T, Bouché M B and Rouelle J 1977 Essai d'estimation de l'influence écologique des lombrices sur les microorganismes. Pedobiologia 17, 400–417.Google Scholar
  92. Loksa I 1978 Mikrohabitate und ihre Bedeutung für die Verteilung der Collembolengemeinschaften in einem Haibucheneichenbestand. Opusc. Zool. 15, 93–117.Google Scholar
  93. Lussenhop J 1992 Mechanisms of microarthropod-microbial interactions in soil. Adv. Ecol. Res. 23, 1–33.Google Scholar
  94. MacDonald D W 1983 Predation on earthworms by terrestrial vertebrates.In Earthworm Ecology: From Darwin to Vermiculture. Ed. J E Satchell. pp 393–414. Chapman and Hall, London.Google Scholar
  95. Mackay A D and Kladivko E J 1985 Earthworms and the rate of breakdown of soybean and maize residues in soil. Soil Biol. Biochem. 17, 851–857.Google Scholar
  96. MacNish G C 1985 Methods of reducing Rhizoctonia bare patch of cereals in western Australia. Plant Pathol. 34, 175–181.Google Scholar
  97. Madsen E L and Alexander M 1982 Transport ofRhizobium andPseudomonas through soil. Soil Sci. Soc. Am. J. 46, 557–560.Google Scholar
  98. Máriaglieti K 1979 On the community structure of the gutmicrobiota ofEisenia lucens (Annelida, Oligochaeta). Pedobiologia 19, 213–220.Google Scholar
  99. Marinissen J C Y and Bok J 1988 Earthworm-ammended soil structure: Its influence on Collembola population in grassland. Pedobiologia 32, 243–252.Google Scholar
  100. Martin A 1991 Short- and long-term effects of the endogeic earthwormMillsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol. Fertil. Soils 11, 234–238.Google Scholar
  101. Martin A and Marinissen J C Y 1993 Biological and physicochemical processes in excrements of soil animals. Geoderma 56, 331–347.Google Scholar
  102. Martin A, Cortez J, Barois I and Lavelle P 1987 Les mucus intestinaux de Ver de terre moteur de leurs interactions avec la microflore. Rev. Ecol. Biol. Sol 24, 549–558.Google Scholar
  103. Mather J G and Christensen O 1988 Surface movement of earthworms in agricultural land. Pedobiologia 32, 399–405.Google Scholar
  104. Mather J G and Christensen O 1992 Surface migration of earthworms in grassland. Pedobiologia 36, 51–57.Google Scholar
  105. Mcllveen W D and ColeJr H 1976 Spore dispersal of Endogonadacae by worms, ants, wasps, and birds. Can. J. Bot. 54, 1486–1489.Google Scholar
  106. Melouk H A and Horner C E 1976 Recovery ofVerticillium dahliae pathogenic to mints from castings of earthworms. Am. Phytopathol. Soc. Proc. 3, 265.Google Scholar
  107. Miles H B 1963 Soil protozoa and earthworm nutrition. Soil Sci. 95, 407–409.Google Scholar
  108. Mills J T 1976 Inter relationships between microorganisms, nematodes, insects and other invertebrates affecting their role as pests.In Integrated Control of Soil Pests. pp 20–32. WPRS Bull 3, Wageningen, The Netherlands.Google Scholar
  109. Moody S A, Piearce T G, Ineson P, Dighton J, Robinson C H and Frankland J C 1992 Dispersal of wheatstraw fungi by earthworms.In Soil organisms and Soil Health: Program and Abstracts of the XI International Colloquium on Soil Zoology. Eds. J Haimi and P L Pitkanen. p 83. ISSS, Jyväskylä, Finland.Google Scholar
  110. Morgan M H 1988 The role of microorganisms in the nutrition ofEisenia foetida.In Earthworms in Waste and Environmental Management. Eds. C A Edwards and E F Neuhauser. pp 71–82. SPB Academic Publishing, The Hague, The Netherlands.Google Scholar
  111. Morris D E and Pivnick K A 1991 Earthworm mucus stimulates oviposition in a predatory fly (Diptera: Anthomyiidae). J. Chem. Ecol. 17, 2045–2052.Google Scholar
  112. Murray P M, Feest A and Madelin M F 1985 The number of viable myxomycete cells in the alimentary tracts of earthworms and in earthworm casts. Bot. J. Linn. Soc. 91, 359–366.Google Scholar
  113. Nekrasova K A and Aleksandrova I V 1982 Participation of collembolas and earthworms in the transformation of algal organic matter. Sov. Soil Sci. 14, 31–39.Google Scholar
  114. Nekrasova K A, Kozlovskaya L S, Domraceva L I and Shtina É A 1976 The influence of invertebrates on the development of algae. Pedobiologia 16, 286–297.Google Scholar
  115. Nguyen K B and Smart G CJr. 1991 Pathogenicity ofSteinernema scapterisci to selected invertebrates. J. Nematol. 23, 7–11.Google Scholar
  116. Niklas J and Kennel W 1981 The role of the earthworm,Lumbricus terrestris (L.) in removing sources of phytopathogenic fungi in orchards. Gartenbauwissenchaft 46, 138–142.Google Scholar
  117. Parle J N 1963a Microorganisms in the intestines of earthworms. J. Gen. Microbiol. 31, 1–11.Google Scholar
  118. Parle J N 1963b A microbiological study of earthworm casts. J. Gen. Microbiol. 31, 13–22.Google Scholar
  119. Pederson J C and Hendriksen N B 1993 Effect of passage through the intestinal tract of detrivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria. Biol. Fertil. Soils 16, 227–232.Google Scholar
  120. Piearce T G 1972 The calcium relations of selected Lumbricidae. J. Anim. Ecol. 41, 167–188.Google Scholar
  121. Piearce T G 1978 Gut contents of some lumbricid earthworms. Pedobiologia 18, 153–157.Google Scholar
  122. Piearce T G and Phillips M J 1980 The fate of ciliates in the earthworm gut: An in vitro study. Microbial. Ecol. 5, 313–320.Google Scholar
  123. PoinarJr G O 1978 Associations between nematodes (Nematoda) and Oligochaetes (Annelida). Proc. Helm. Soc. Wash. 45, 202–210.Google Scholar
  124. Ponge J F 1991 Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant and Soil 138, 99–113.Google Scholar
  125. Ravasz K, Zicsi A, Contreras E, Szell V and Szabo I M 1986 Uber die darmaktinomyceten-gemeinschaften einiger regenwürm-arten. Opusc. Zool. 22, 85–102.Google Scholar
  126. Ravasz K, Contreras E and Mariaglieti K 1987a The influence of the composition of food materials on the gut flora ofEisenia lucens (Waga 1857).In Soil Fauna and Soil Fertility. Ed. B R Striganova. pp 443–445. Nauka, Moscow.Google Scholar
  127. Ravasz K, Zicsi A, Contreras E and Szabo I M 1987b Comparative bacteriological analyses of the faecal matter of different earthworm species.In On Earthworms. Eds. A M B Pagliai and P Omodeo. pp 389–399. Mucchi Editore, Modena, Italy.Google Scholar
  128. Raw F 1962 Studies of earthworm populations in orchards I: Leaf burial in apple orchards. Ann. Appl. Biol. 50, 389–404.Google Scholar
  129. Reddell P and Spain A V 1991a Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol. Biochem. 23, 767–774.Google Scholar
  130. Reddell P and Spain A V 1991b Transmission of infectiveFrankia (Actinomycetales) propagules in casts of the endogeic earthwormPontoscolex corethrurus (Oligochaeta: Glossoscolecidae). Soil Biol. Biochem. 23, 775–778.Google Scholar
  131. Roessner J 1981 Einfluss von Regenwürmern auf phytoparasitäre Nematoden. Nematologica 27, 339–347.Google Scholar
  132. Roessner J 1986 Untersuchungen zur Reduktion von Nematoden im Bodem durch Regenwüermer. Med. Fac. Landbouww. Rijksuniv. Gent 51/3b, 1311–1318.Google Scholar
  133. Roth C H and Joschko M 1991 A note on the reduction of runoff from crusted soils by earthworm burrows and artificial channels. Z. Plfanzenernahr. Bodenkd. 154, 101–105.Google Scholar
  134. Rouelle J 1983 Introduction of amoebae andRhizobium japonicum into the gut ofEisenia fetida (Sav.) andLumbricus terrestris L.In Earthworm Ecology: From Darwin to Vermiculture. Ed. J E Satchell. pp 375–381. Chapman and Hall, New York.Google Scholar
  135. Rouelle J 1984 Relations vers de terre-microorganismes: Applications á la lombriculture (nutrition, maladies, élimination des germes pathogénes).In L'Elevage du ver de terreau: Le point sur les recherches en cours. pp 22–39. ITAVI, Paris.Google Scholar
  136. Satchell J E and Martin K 1984 Phosphatase activity in earthworm faeces. Soil Biol. Biochem. 16, 191–194.Google Scholar
  137. Scheu S 1987 Microbial activity and nutrient dynamics in earthworm casts. Biol. Fertil. Soils 5, 230–234.Google Scholar
  138. Scheu S 1990 Changes in microbial nutrient status during secondary succession and its modification by earthworms. Oecologia 84, 351–358.Google Scholar
  139. Scheu S 1992 Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1113–1118.Google Scholar
  140. Scheu S 1993 Litter microflora-soil macrofauna interactions in lignin decomposition: A laboratory experiment with14C-labelled lignin. Soil Biol. Biochem. 25, 1703–1711.Google Scholar
  141. Segun A O 1978 Monocystid gregarine parasites of Nigerian earthworms. J. Protozool. 25, 157–162.Google Scholar
  142. Senapati B K 1992 Biotic interactions between soil nematodes and earthworms. Soil Biol. Biochem. 24, 1441–1444.Google Scholar
  143. Shapiro D I, Beny E C and Lewis L C 1993 Interactions between nematodes and earthworms: Enhanced dispersal ofSteinernema carpocapsae. J. Nematol. 25, 189–192.Google Scholar
  144. Shaw C and Pawluk S 1986 Faecal microbiology ofOctolasion tyrtaeum, Aporrectodea turgida andLumbricus terrestris and its relation to the carbon budgets of three artificial soils. Pedobiologia 29, 377–389.Google Scholar
  145. Shipitalo M J and Protz R 1988 Factors affecting the dispersability of clay in worm casts. Soil Sci. Soc. Am. J. 52, 764–769.Google Scholar
  146. Shtina É A, Kozlovskaya L S and Nekrasova K A 1981 Relations of soil oligochaetes and algae. Sov. J. Ecol. 12, 44–48.Google Scholar
  147. Spain A V, Lavelle P and Mariotti A 1992 Stimulation of plant growth by tropical earthworms. Soil Biol. Biochem. 24, 1629–1633.Google Scholar
  148. Spiers G A, Gagnon D, Nason G E, Packee E C and Lousier J D 1986 Effects and importance of indigenous earthworms on decomposition and nutrient cycling in coastal forest systems. Can J. For. Res. 16, 983–989.Google Scholar
  149. Stephens P M, Davoren C W, Ryder M H and Doube B M 1993a Influence of the lumbricid earthwormAporrectodea trapezoides on the colonization of wheat roots byPseudomonas corrugata strain 2140R in soil. Soil Biol. Biochem. 25, 1719–1724.Google Scholar
  150. Stephens P M, Davoren C W, Doube B M, Ryder M H, Benger A M and Neate S M 1993b Reduced severity ofRhizoctonia solani disease on wheat seedlings associated with the presence of the earthwormAporrectodea trapezoides (Lumbricidae). Soil Biol. Biochem. 25, 1477–1484.Google Scholar
  151. Stephens P M, Davoren C W, Ryder M H and Doube B M 1994 Influence of the earthwormAporrectodea trapezoides (Lumbricidae) on the colonization of alfalfa (Medicago sativa L.) roots byRhizobium meliloti strain L5–30R and the survival ofRhizobium meliloti L5–30R in soil. Biol. Fertil. Soils (In press).Google Scholar
  152. Stockdill J 1982 Effects of introduced earthworms on the productivity of New Zealand pastures. Pedobiologia 24, 29–35.Google Scholar
  153. Striganova B R, Marfenina O E and Ponomarenko V A 1989a Some aspects of the effect of earthworms on soil fungi. Biol. Bull. Acad. Sci. USSR 15, 460–463.Google Scholar
  154. Striganova B R, Derimova T D P, Mazantseva G P and Tiunov A V 1989b Effects of earthworms on biological nitrogen fixation in the soil. Biol. Bull. Acad. Sci. USSR 15, 560–565.Google Scholar
  155. Swift M J, Heal O W and Anderson J M 1979 Decomposition in terrestrial ecosystems. Blackwell Scientific, Oxford. 372p.Google Scholar
  156. Szabo I M, Prauser H, Bodnar G, Chu T L, Ravasz K, Hossein E A and Mariaglietti K 1990 The indiginous intestinal bacteria of soil arthropods and worms.In Microbiology in Poecilotherms. Ed. R Leser. pp 109–117. Elsevier, Amsterdam.Google Scholar
  157. Szlavecz K 1985 The effect of microhabitats on the leaf litter decomposition and on the distribution of soil animals. Hol. Ecol. 8, 33–38.Google Scholar
  158. Thompson L, Thomas C D, Radley J M A, Williamson S and Lawton J H 1993 The effects of earthworms and snails in a simple plant community. Oecologia 95, 171–178.Google Scholar
  159. Tiwari S C and Mishra R R 1993 Fungal abundance and diversity in earthworm casts and in uningested soil. Biol. Fertil. Soils 16, 131–134.Google Scholar
  160. Tiwari S C, Tiwari B K and Mishra R R 1989 Microbial populations, enzyme activities and nitrogen-phosphorus-potassium enrichment of earthworm casts and in the surrounding soil of a pineapple plantation. Biol. Fertil. Soils 8, 178–182.Google Scholar
  161. Tiwari S C, Tiwari B K and Mishra R R 1990 Microfungal species associated with the gut content and casts ofDrawida assamensis Gates. Proc. Indian Acad. Sci. (Plant Sci.) 100, 379–382.Google Scholar
  162. Tomati U, Grappelli A and Galli E 1988 The hormone-like effect of earthworm casts on plant growth. Biol. Fertil. Soils 5, 288–294.Google Scholar
  163. Trigo D and Lavelle P 1993 Changes in respiration rate and some physicochemical properties of soil during gut transit throughAllolobophora molleri (Lumbricidae, Oligochaeta). Biol. Fertil. Soils 15, 185–188.Google Scholar
  164. Trigo D, Martin A and Lavelle P 1994 Evidence of a mutualistic type of digestion in the temperate earthwormAllolobophora molleri. Acta Zool. Fenn. (In press).Google Scholar
  165. Urbásek F and Pizl V 1991 Activity of digestive enzymes in the gut of five earthworm species (Oligochaeta: Lumbricidae). Rev. Ecol. Biol. Sol 28, 461–468.Google Scholar
  166. Valembois P, Roch R and Lasségues M 1986 Antibacterial molecules in annelids.In Immunity in Invertebrates: Cells. Molecules, and Defense Reactions. Ed. M Brehelin. pp 74–93. Springer-Verlag, Berlin.Google Scholar
  167. Van Rhee J A 1963 Earthworm activity and the breakdown of organic matter in agricultural soils.In Soil Organisms. Eds. J Doeksen and Jvan der Drift. pp 55–59. North Holland Publ. Co., Amsterdam.Google Scholar
  168. Visser S 1985 Role of the soil invertebrates in determining the composition of soil microbial communities.In Ecological Interactions in Soil. Eds. A Fitter, D Atkinson, D J Read and M B Usher. pp 297–317. Blackwell Scientific, Oxford.Google Scholar
  169. Wolters V and Joergensen R G 1992 Microbial carbon turnover in beech forest soils worked byAporrectodea caliginosa (Savigny) (Oligochaeta: Lumbricidae). Soil Biol. Biochem. 24, 171–177.Google Scholar
  170. Ydrogo H F B 1994 Effecto de las lombrices de tierra (Pontoscolex corethrurus) en las micorrizas vesiculo arbusculares (M.V. A.) en la etapa de crecimento de araza (Eugenia stipitata), achiote (Bixa orellana), pijuayo (Bactris gasipaes), en suelos ultisoles de Yurimaguas. Thesis, Universidad Nacional de San Martin, Tarapoto, Peru. 34p.Google Scholar
  171. Yeates G W 1980 Influence of earthworms on soil nematode populations. J. Nematol. 12, 242.Google Scholar
  172. Yeates G W 1981 Soil nematode populations depressed in the presence of earthworms. Pedobiologia 22, 191–195.Google Scholar
  173. Zhang B G, Rouland C, Lattaud C and Lavelle P 1993 Activity and origin of digestive enzymes in gut of the tropical earthwormPontoscolex corethrurus. Eur. J. Soil Biol. 29, 7–11.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • George G. Brown
    • 1
  1. 1.Department of Crop and Soil Sciences and Institute of EcologyUniversity of GeorgiaAthensUSA

Personalised recommendations