Advertisement

Plant and Soil

, Volume 77, Issue 1, pp 127–130 | Cite as

Nitrate reductase and glutamine synthetase activity in leaves and roots of nitrate-fedHelianthus annuus L.

  • J. J. Kaiser
  • O. A. M. Lewis
Short Communication

Summary

It has been reported that in plants of nitrate-fedH. annuus, nitrate reductase activity (NRA) is restricted to the roots of the plant. With an improved extraction technique using a medium containing 2% casein and 1.5 g insoluble polyvinylpyrrolidone (PVP) per gram material, however, the leaves ofH. annuus showed a far greaterin vitro NRA (24.7±0.4 μmoles h−1 g fr.wt.−1) than did the roots (3.4±0.6 μmoles h−1 g fr.wt.−1).In vitro glutamine synthetase activity (GSA) was found to be greater in the leaves (27 μmoles h−1 g fr. wt.−1) than the root (5.6 μmoles h−1 g fr.wt.−1) using a standard extraction medium. With the addition of casein and PVP to the extraction medium, GSA increased to 141 μmoles h−1 g fr.wt.−1 in the leaves and 23 μmoles h−1 g fr.wt.−1 in the roots.

It is thus essential to include both casein and PVP in the extracting medium of leaves and roots ofH. annuus when determiningin vitro NRA and GSA.

Key words

Glutamine synthetase Helianthus N utilization Nitrate Nitrate reduction 

Abbreviations

GSA

glutamine synthetase activity

NRA

nitrate reductase activity

PVP

polyvinylpyrrolidone

BSA

bovine serum albumin

NR

nitrate reductase

GS

glutamine synthetase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harel E et al. 1977 Planta Berlin 134, 195–200.Google Scholar
  2. 2.
    Hewitt E J 1966 Sand and Water Culture Methods used in the Study of Plant Nutrition. Rev. Ed. Commonw. Agr. Bur. Farnham Royal, England.Google Scholar
  3. 3.
    Kaiser J J and Lewis O A M 1980 New Phytol. 85, 235–241.Google Scholar
  4. 4.
    Lewis O A M et al. 1982 Ann. Bot. 49, 30–50.Google Scholar
  5. 5.
    Loomis W D and Battaile J 1966 Phytochem. 5, 423–438.Google Scholar
  6. 6.
    Matsumoto H et al. 1979 Plant Cell Physiol. 20, 573–582.Google Scholar
  7. 7.
    Miflin B J 1974 Plant Physiol. 54, 550–555.Google Scholar
  8. 8.
    Reed A J et al. 1980 Plant Physiol. 66, 164–170.Google Scholar
  9. 9.
    Rhodes D et al. 1975 Planta Berlin 125, 201–211.Google Scholar
  10. 10.
    Schrader L E et al. 1974 Plant Physiol. 53, 688–690.Google Scholar
  11. 11.
    Sherrard J H et al. 1979 Plant Physiol. 64, 640–645.Google Scholar
  12. 12.
    Stewart G R and Rhodes D 1977 New Phytol. 79, 257–268.Google Scholar
  13. 13.
    Stock W D and Lewis O A M 1982 South Afr. J. Bot. 4, 124–126.Google Scholar
  14. 14.
    Weissman G S 1972 Plant Physiol. 49, 138–141.Google Scholar
  15. 15.
    Yamaya T and Ohira K 1977 Plant Cell Physiol. 18, 915–925.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1984

Authors and Affiliations

  • J. J. Kaiser
    • 1
  • O. A. M. Lewis
    • 1
  1. 1.Department of Botany, Faculty of ScienceUniversity of Cape TownP/B RondeboschRepublic of South Africa

Personalised recommendations