Skip to main content
Log in

Nitrogen supply and crop yield: The global scene

La provisión de nitrógeno a los cultivos y su rendimiento: Una visión general

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Agricultural yields are limited by acute deficiencies of at least one major nutrient in those parts of the world where most people live. Crop responses to fertilizer are invariably considerable and average yields per ha of cereals (the main component of man's food) in the major countries are nearly proportional to the amounts of N+P2O5+K2O applied as fertilizer. Often responses to nitrogen fertilizer are restricted by shortage of some other nutrient, but in West Europe where the soils are well endowed with phosphorus, potassium and sulphur average yields of wheat per country are almost directly proportional to the level of N-fertilizer applied.

Much N-fertilizer is wasted because of difficulties in forecasting levels and methods of application for different conditions. Predictions based on simple statistical interpretation of the results of field trials have proved to be unsatisfactory. The new mechanistic modelling approaches that take far greater account of existing principles about key processes have been more successful.

Nitrogen recycling is small in existing agriculture and there is much scope for improvement. Biological fixation provides much nitrogen for world agriculture. Under the right conditions legumes can fix at least 300 kg N ha−1 yr−1, which is more than sufficient for maximum growth. A major drawback of legumes, however, is that grain yields are inherently much lower than those of cereals.

Sufficient N-fertilizer to grow all the food required for mankind can be synthesised from only 2% of the present world consumption of fossil fuel. Despite massive increases in oil prices, the cost of nitrogen fertilizer relative to that of food has remained virtually unchanged. It is still very profitable to apply nitrogen fertilizer in most parts of the world.

Serious problems in the future are likely to result from essential resources (energy and minerals) being very unevenly distributed in relation to where they are needed to grow food.

Resumen

Los rendimientos de los cultivos están limitados en la agricultura por severas deficiencias de por lo menos uno de los nutrimentos principales en aquellas regiones del mundo donde vive una major proporción de la población. La respuesta de los cultivos a la fertilización es en general apreciable tanto que los rendimientos promedios de los cereales, la principal fuente alimenticia del hombre, son casi proporcionales al las cantidades de N+P2O5+K aplicadas en los principales paises productores. Frecuentemente la respuesta a los fertilizantes nitrogenades se ven limitadas por deficiencias en otro nutrimento pero en Europa Occidental, donde los suelos están bien dotados de fósforo, potasio y azufre, los rendimientos promedio de trigo son casi directamente proporcionales a los niveles de N aplicado.

Debido a las dificultades para pronosticar los niveles y métodos de aplicación apropiados para condiciones diferentes, gran parte del nitrógeno aplicado no es aprovechado. Las predicciones basadas en interpretaciones estadísticas de ensayos de campo han dado resultados poco satisfactorios mientras que los nuevos métodos basados en modelos mecanísticos que prestan mayor atención a los principios que controlan procesos claves, han dado mejores resultados.

Muy poca proporción del nitrógeno aplicado en la agricultura actual es reutilizado y existen grandes oportunidades de obtener mejoras en este respecto. Bajo condiciones adecuadas las leguminosas pueden fijar cantidades importantes de nitrógeno (ca. 300 kg ha−1 año−1) que son mas que suficiente para obtener crecimientos máximos, sin embargo las leguminosas tienen la gran desventaja de rendir inherentemente menos que los cereales. La cantidad de abono nitrogenado necesario para producir suficiente alimento para la humanidad, puede ser sintetizado utilizando solo el 2% del consumo mundial de combustible fósil. A pesar de grandes aumentos en los precios del petroleo, el precio del abono nitrogenado se ha mantenido casi constante en relación al de los alimentos. Aun sigue siendo muy ventajoso aplicar abonos nitrogenados en la agricultura de la mayor parte del mundo.

Algunos problemas graves en el futuro podrían presentarse como resultado de la mala distribución de recursos esenciales tales como energía y minerales en relación a los sitios de mayor demanda por la agricultura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold P W 1954 Losses of nitrous oxide from soil. J. Soil Sci. 5, 116–128.

    Google Scholar 

  2. Barnes A, Greenwood D J and Cleaver T J 1976 A dynamic model for the effects of potassium and nitrogen fertilizers on the growth and nutrient uptake of crops. J. Agric. Sci. Camb. 86, 225–244.

    Google Scholar 

  3. Batey T 1976 Some effects of nitrogen fertilizer on winter wheat. J. Sci. Food Agric. 27, 287–297.

    Google Scholar 

  4. Biscoe P V, Scott R K and Monteith J L 1975 Barley and its environment. III. Carbon budget of the stand. J. Appl. Ecol. 12, 269–293.

    Google Scholar 

  5. British Petroleum Limited 1979 B.P. Statistical Review of the World Oil Industry. British Petroleum Limited, London.

    Google Scholar 

  6. British Petroleum Limited 1979 Oil Crisis ... Again? A Brief by the Policy Review Unit. British Petroleum Limited, London.

    Google Scholar 

  7. Burns I G 1977 Nitrate movement in soil and its agricultural significance. Outl. Agric. 9, 144–148.

    Google Scholar 

  8. Burns I G 1980 A simple model for predicting the effects of leaching of fertilizer nitrate during the growing season on the fertilizer need of crops. J. Soil Sci. 31, 175–185.

    Google Scholar 

  9. Cooke G W 1975 The energy costs of the nitrogen fertilizers used in Britain, the returns received and some savings that are possible. J. Sci. Food Agric. 26, 1065–1069.

    Google Scholar 

  10. Cooke G W 1976 A review of the effects of agriculture on the chemical composition and quality of surface and underground waters.In Ministry of Agriculture Fisheries and Food, Technical Bulletin 32, Agriculture and Water Quality, pp 5–57. Her Majesty's Stationery Office, London.

    Google Scholar 

  11. Cooke G W 1977 Waste of fertilizers. Phil. Trans. R. Soc. London B 281, 231–241.

    Google Scholar 

  12. Evans L T 1975 Crops and world food supply.In Crop Physiology-Some Case Histories. pp 1–22. Evans L T (Ed.). Cambridge University Press, Cambridge.

    Google Scholar 

  13. FAO 1974 Fertilizers, the first decade: A summary of results achieved between 1961 and 1971. FAO, Rome.

    Google Scholar 

  14. FAO 1978 Fertilizer Yearbook 1977. FAO, Rome.

    Google Scholar 

  15. FAO 1978 Production Yearbook 1977. Vol. 31. FAO, Rome.

    Google Scholar 

  16. Fowden L 1980 Amino acids: production by plants and the requirements by man.In Food Chains and Human Nutrition. pp 135–155. Blaxter K (Ed.) Applied Science Publishers, London.

    Google Scholar 

  17. Greenwood D J 1962 Nitrification and nitrate dissimilation in soil. II. Effect of oxygen concentration. Plant and Soil 17, 378–391.

    Article  Google Scholar 

  18. Greenwood D J 1980 Fertilizer use and food production: World scene. Fert. Res. 2, 33–51.

    Article  Google Scholar 

  19. Greenwood D J and Barnes A 1978 A theoretical model for the decline in the protein content in plants during growth. J. Agric. Sci. Camb. 91, 461–466.

    Google Scholar 

  20. Greenwood D J, Cleaver T J, Loquens S M H and Niendorf K B 1977 Relationship between plant weight and growing period for vegetable crops in the United Kingdom. Ann. Bot. 41, 987–997.

    Google Scholar 

  21. Greenwood D J, Cleaver T J, Turner M K, Hunt J, Niendorf K B and Loquens S M H 1980 Comparisons of the effects of nitrogen fertilizer on the yield, nitrogen content and quality of 21 different vegetable and agricultural crops. J. Agric. Sci. Camb. 95, 471–485.

    Google Scholar 

  22. Hall D O 1980 World production of organic matter.In Food chains and human nutrition, pp 51–92. Blaxter K (Ed.). Applied Science Publishers, London.

    Google Scholar 

  23. Johnston A E 1976 Additions and removals of nitrogen and phosphorus in long term experiments at Rothamsted and Woburn and the effect of the residues on total soil nitrogen and phosphorus.In Ministry of Agriculture Fisheries and Food, Technical Bulletin 32, Agriculture and Water Quality, pp 111–144. Her Majesty's Stationery Office, London.

    Google Scholar 

  24. Jungk A and Wehrmann J 1978 Determination of nitrogen fertilizer requirements by soil and plant analysis. Plant Nutrition 1978. Proc. 8th Int. Colloq. Plant Analysis and Fertilizer Problems, Auckland, New Zealand. DSIR Information Series No. 134, Vol. 1, pp 209–224. Government Printer, Wellington, New Zealand.

    Google Scholar 

  25. Kresge C B and Satchwell D P 1960 Gaseous loss of ammonia from nitrogen fertilizer applied to soils. Agron. J. 52, 104–107.

    Google Scholar 

  26. Kurian G T 1978 The Book of World Rankings. Macmillan, London.

    Google Scholar 

  27. Lapedes D N 1977 McGraw Hill Encyclopedia of Food and Agriculture, p 3. McGraw Hill, New York.

    Google Scholar 

  28. Lauer D A, Bouldin D R and Klausner S D 1976 Ammonia volatilization of dairy manure spread on the soil surface. J. Environ. Qual. 5, 134–144.

    Google Scholar 

  29. Lewis D A and Tatchell J A 1978 The role of fertilizer energy in agricultural production. Phosph. Agric. 74, 1–13.

    Google Scholar 

  30. Loomis R S and Gerakis P A 1975 Productivity of agricultural ecosystems.In Photosynthesis and Productivity in Different Environments, pp 145–172. Cooper J P (Ed.). Cambridge University Press, Cambridge.

    Google Scholar 

  31. Mary B and Remy J C 1979 Essai d'appréciation de la capacité de minéralisation de l'azote des sols de grande culture. 1. Signification des cinetiques de mineralisation de la matière organique humifée. Ann. Agron. 30, 513–527.

    Google Scholar 

  32. Nutman P S 1976 IBP field experiments on nitrogen fixation by nodulated legumes.In Symbiotic Nitrogen Fixation in Plants, IBP Synthesis Ser. Vol. 7, pp 211–217. Nutman P S (Ed.). Cambridge University Press, Cambridge.

    Google Scholar 

  33. OECD 1980 Instability of agricultural markets. OECD Observer No. 102, 19–23.

    Google Scholar 

  34. Paul A A and Southgate D A T 1978 McCance and Widdowson's The Composition of Foods, p 9. Her Majesty's Stationery Office, London.

    Google Scholar 

  35. Richards I R 1979 Response of tropical crops to fertilizer under farmers conditions-analysis of results of the FAO fertilizer programme. Phosph. Agric. 76, 147–156.

    Google Scholar 

  36. Salt P D 1965 An apparatus for measuring losses of ammonia from decomposing plant materials. Chem. Ind. p 461.

  37. Shibbles R M, Anderson I C and Gibson A H 1975 Soybean.In Crop Physiology-Some Case Histories, pp 151–189. Evans L T (Ed.). Cambridge University Press, Cambridge.

    Google Scholar 

  38. Sibma L 1968 Growth of closed green crop surfaces in the Netherlands. Neth. J. Agric. Sci. 16, 211–216.

    Google Scholar 

  39. Sinclair T R and Wit C T de 1975 Photosynthate and nitrogen requirements for seed production by various crops. Science 189, 565–567.

    Google Scholar 

  40. Stewart W D P, May E and Tuckwell S B 1976 Nitrogen and phosphorus from agricultural land and urbanization and their fate in shallow fresh water lochs.In Ministry of Agriculture Fisheries and Food, Technical Bulletin 32, Agriculture and Water Quality, pp 111–114. Her Majesty's Stationery Office, London.

    Google Scholar 

  41. Terman G L 1979 Volatization losses of nitrogen as ammonia from surface-applied fertilizers, organic amendments and crop residues. Adv. Agron. 31, 189–223.

    Google Scholar 

  42. Tinsley J and Nowakowski T Z 1969 The composition and manurial value of poultry excreta, straw-droppings compost and deep litter. II. Experimental studies on composts. J. Sci. Food Agric. 10, 150–167.

    Google Scholar 

  43. von Peter A 1980 Fertilizer requirements in developing countries. Proc. Fert. Soc. 188, 1–58.

    Google Scholar 

  44. White D J 1977 Prospects for greater efficiency in the use of different energy sources. Phil. Trans. Roy. Soc. Lond. B. 281, 261–275.

    Google Scholar 

  45. Wit C T de 1968 Plant Production.In Agricultural Sciences and the World Food Supply. Miscellaneous Papers 3(1968), pp 42–44. Landbouwhogeschool Wageningen. Veenman & Zonen, Wageningen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwood, D.J. Nitrogen supply and crop yield: The global scene. Plant Soil 67, 45–59 (1982). https://doi.org/10.1007/BF02182754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02182754

Key words

Navigation