Plant and Soil

, Volume 67, Issue 1–3, pp 35–43 | Cite as

Simulation of nitrogen in agro-ecosystems: Criteria for model selection and use

  • P. S. C. Rao
  • R. E. Jessup
  • A. G. Hornsby


Available simulation models for describing nitrogen behavior in agro-ecosystems vary in two characteristics:(i) conceptual completeness in terms of the number of processes considered, and(ii) thelevel of detail at which each process is modeled. These model characteristics are determined by both the objectives that the model is designed to meet and the current state-of-the-art understanding of the various processes included in the model. The levels of conceptual completeness and detail in a model govern the potential applications for which the model may be used. Applications of models may be research-oriented, management-oriented, or planning-oriented. A model suitable for a given application should have an appropriate level of completeness and detail to accomplish the stated objective.

Criteria to aid in the selection and evaluation of nitrogen simulation models for a particular application include: i) the availability of computational facilities, ii) the spatial and temporal scales of application, iii) the intended use of the simulations, iv) the availability of model input data, and v) the confidence regions associated with the model output.

Key words

Agro-ecosystems Mathematical models N-cycling Simulation modeling 

Simulación de nitrógeno en agro-ecosistemas: Criterios para selección y uso del modelo


Los modelos de simulación del comportamiento en agro-ecosistemas difieren en dos características: (i)entereza o minuciosidad conceptual, en términos del número de procesos que considera, y (ii)el nivel de detalle en el cual cada proceso es modelado. Estas características del modelo son determinadas por los objetivos para los cuales el modelo es diseñado y por el grado acutal del conocimiento de los procesos incluídos en el modelo. Los niveles de entereza conceptual y de detalle en un modelo determinan las aplicaciones potenciales para las cuales dicho modelo puede ser utilizado. Las aplicationes pueden ser orientadas a la investigación, manejo o planificación. Un modelo adecuado para una aplicación determinada debería tener un nivel apropiado de entereza y detalle para lograr el objetivo establecido.

Los criterios de ayuda en la selección y evaluación de los modelos de simulación del nitrógeno para una aplicación particular incluyen: (i) la disponibilidad de facilidades computacionales, (ii) las escalas espacial y temporal de aplicación, (iii) el uso deseado de las simulaciones, (iv) la disponibilidad de datos de entrada al modelo, y (v) los ámbitos de confianza asociadas con las salidas del modelo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beek J and Frissel M J 1973 Simulation of Nitrogen Behaviour in Soils. Wageningen: Pudoc. 67 p.Google Scholar
  2. 2.
    Biggar J W and Nielsen D R 1976 Spatial variability of the leaching characteristics of soils. Water Resour. Res. 12, 78–84.Google Scholar
  3. 3.
    Davidson J M and Rao P S C 1978 Use of mathematical relationships to describe the behaviour of nitrogen in the crop root zone.In Pratt, P. F. (Ed.). Management of Nitrogen in Irrigated Agriculture: Proceedings of a National Conference, pp 291–319. Riverside: Univ. of Calif. Press.Google Scholar
  4. 4.
    Davidson J M, Graetz D A, Rao P S C and Selim H M 1978 Simulation of Nitrogen Movement, Transformations, and Uptake in the Plant Root Zone. Washington D. C.: EPA-600/3-78-029. 116 p.Google Scholar
  5. 5.
    Donigian A S Jr. and Crawford N H 1976 Modeling Pesticides and Nutrients on Agricultural Lands. Washington D.C.: EPA-600/3-76-043. 332 p.Google Scholar
  6. 6.
    Duffy J, Chung C, Boast C and Franklin M 1975 A simulation model of biophysiochemical transformations of nitrogen in tile-drained corn belt soils. J. Environ. Qual. 4, 447–486.Google Scholar
  7. 7.
    Fried M, Tanji K K, and van de Pol R M 1976 Simplified long term concepts for evaluating leaching of nitrogen from agricultural land. J. Environ. Qual. 5, 197–200.Google Scholar
  8. 8.
    Frissel M J (Ed.) 1978 Cycling of Mineral Nutrients in Agricultural Ecosystems. New York: Elsevier Scientific. 356 p.Google Scholar
  9. 9.
    Frissel M J and van Veen J A (Eds.) 1981 Simulation of Nitrogen Behaviour of Soil-Plant Systems. Wageningen: Pudoc. 277 p.Google Scholar
  10. 10.
    Hagin J and Amberger A 1974 Contribution of Fertilizers and Manures to the N- and P-Loads of Waters: A Computer Simulation. A Final Report to Deutsche Forschungsgemeinschaft from Technion Foundation, Israel. 123 p.Google Scholar
  11. 11.
    Hornsby A G 1973 Prediction Modeling for Salinity Control in Irrigation Return Flows. Washington D.C. EPA-R2-168. 155 p.Google Scholar
  12. 12.
    Karplus W J 1976 The future of mathematical models of water resource systems.In Vansteenkiste G C (Ed.). System Simulation in Water Resources, pp 11–18. Amsterdam: North-Holland Publishing Co.Google Scholar
  13. 13.
    Law J P and Skogerboe G V (Eds) 1977 Irrigation Return Flow Quality Management: Proceedings of National Conference. Ft. Collins: Colorado State University Press. 451 p.Google Scholar
  14. 14.
    Nielsen D R and MacDonald J G (Eds) 1978 Nitrogen in the Environment. Vol. 1. New York: Academic Press. 526 p.Google Scholar
  15. 15.
    Nielsen D R and MacDonald J G (Eds) 1978 Nitrogen in the Environment. Vol. 2. New York: Academic Press. 528 p.Google Scholar
  16. 16.
    Nielsen D R, Biggar J W and Erh K T 1973 Spatial variability of field-measured soil-water properties. Hilgardia 42, 215–259.Google Scholar
  17. 17.
    Pratt P F (Ed.) 1978 Management of Nitrogen in Irrigated Agriculture: Proc. of National Conference. Sacramento: Univ. of California Press. 442 p.Google Scholar
  18. 18.
    Rao P S C, Davidson J M and Jessup R E 1981 Simulation of nitrogen behaviour in the root zone of cropped land areas receiving organic wastes.In Frissel M J and van Veen J A (Eds). Simulation of Nitrogen Behaviour of Soil-Plant Systems, pp 81–95. Wageningen: Pudoc.Google Scholar
  19. 19.
    Reuss J O and Innis G S 1977 A grassland nitrogen flow simulation model. Ecology 58, 379–388.Google Scholar
  20. 20.
    Shaffer M J, Ribbens R W and Huntley C W 1977 Detailed Return Flow Salinity and Nutrient Simulation Model. Vol. V. Prediction of Mineral Quality of Irrigation Return Flow. Washington D.C.: EPA-600/2-77-179. 243 p.Google Scholar
  21. 21.
    Stevenson F J (Ed.) 1981 Nitrogen in Agricultural Soils. Agronomy Monograph No. 22. Madison: American Society of Agronomy.Google Scholar
  22. 22.
    Tanji K K 1980 Problems in modeling nonpoint sources of nitrogen in agricultural systems.In Overcash M R and Davidson J M (Eds). Environmental Impact of Nonpoint Source Pollution. pp 165–183. Ann Arbor: Ann Arbor Sci. Publ.Google Scholar
  23. 23.
    Tanji K K 1981 Modeling of the soil nitrogen cycle.In Stevenson F J (Ed.). Nitrogen in Agricultural Soils. Agronomy Monograph No. 22. Madison. American Society of Agronomy.Google Scholar
  24. 24.
    Tanji K K and Gupta S K 1978 Computer simulation modeling of nitrogen in irrigated croplands.In Nielsen D R and MacDonald J G (Eds). Nitrogen in the Environment, Vol. 1, 526 p. New York: Academic Press.Google Scholar
  25. 25.
    Tanji K K, Mehran M and Gupta S K 1981 Water and nitrogen fluxes in the root zone of irrigated maize.In Frissel M J and van Veen J A (Eds). Simulation of Nitrogen Behaviour of Soil-Plant Systems, pp 51–67. Wageningen: Pudoc.Google Scholar
  26. 26.
    Tanji K K, Fried M and van de Pol R M 1977 A steady-state conceptual nitrogen model for estimating nitrogen emissions from cropped lands. J. Environ. Qual. 6, 155–159.Google Scholar
  27. 27.
    Tanji K K, Broadbent F E, Mehran M and Fried M 1979 An extended version of a conceptual model for evaluating annual nitrogen leaching losses from croplands. J. Environ. Qual. 8, 114–120.Google Scholar
  28. 28.
    van Veen J A and Frissel M J 1981 Simulation model of the behaviour of nitrogen in soil.In Frissel M J and van Veen J A (Eds). Simulation of Nitrogen Behaviour of Soil-Plant Systems, pp 126–144. Wageningen: Pudoc.Google Scholar
  29. 29.
    Warrick A W and Nielsen D R 1980 Spatial variability of soil physical properties in the field.In Heillel D (Ed.). Applications of Soil Physics, pp 319–344. New York: Academic Press.Google Scholar
  30. 30.
    Warrick A W, Mullen G J and Nielsen D R 1977 Predictions of soil-water flux based upon field-measured soil-water properties. Soil Sci. Soc. Am. Proc. 41, 14–19.Google Scholar
  31. 31.
    Watts D G and Hanks R J 1978 A soil-water nitrogen model for irrigated corn on sandy soils. Soil Sci. Soc. Am. J. 42, 492–499.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1982

Authors and Affiliations

  • P. S. C. Rao
    • 1
  • R. E. Jessup
    • 1
  • A. G. Hornsby
    • 1
  1. 1.Soil Science DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations