Plant and Soil

, Volume 67, Issue 1–3, pp 15–34 | Cite as

Microbiological regulation of the biogeochemical nitrogen cycle

  • T. Rosswall
Article

Abstract

Most nitrogen transformations in soil are carried out by micro-organisms. An understanding of the microbiological processes is thus necessary in order for us to devise management practices in agricultural ecosystems, which will optimize plant root uptake of nitrogen and minimize nitrogen losses from the systems. Some aspects of the individual microbiological processes in the nitrogen cycle are discussed and their importance for an efficient management of agroecosystems.

In soil various groups of organisms compete for available inorganic nitrogen and quantitative data are needed on the uptake kinetics for these various groups in order to be able to assess their competitive ability under different conditions.

The influence of abiotic factors such as oxygen concentration, inorganic nitrogen concentration and pH is discussed in relation to the different processes.

The importance of acetylene as a tool in nitrogen cycling studies is discussed briefly.

Key words

Acetylene Denitrification Immobilization Mineralization Microbial processes N-cycling N2-fixation Nitrification Nitrate reduction Oxygen 

Regulación microbiana del ciclo bíogeoquímico del nitrógeno

Resumen

La mayoría de las transformaciones del nitrógeno en el suelo ocurren a través de los micro-organismos. Se requiere asi un conocimiento de los procesos microbiológicos con el fin de desarrollar las prácticas de manejo de los sistemas agrícolas que optimicen la absorción de nitrógeno por las raices y que minimicen las pérdidas de nitrógeno de los sistemas. Se discuten algunos aspectos de ciertos procesos microbiológicos en el ciclo de nitrógeno como su importancia para el manejo eficiente de agroecosistemas.

Varios grupos de microorganismos compiten por el nitrógeno disponible y se requieren dados cuantitativos sobre la cinética de absorción de estos grupos de manera de estimar su capacidad de competir bajo diferentes condiciones.

La influencia de los factores abióticos tales como la concentración de oxígeno, la concentración de nitrógeno inorgánico y el pH se discuten en relación a los diferentes procesos.

Se discute también la importancia del acetileno como herramienta para estudiar el ciclo de nitrógeno.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson R V, Coleman D C and Cole C V 1981 Effects of saprotrophic grazing on net mineralization.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 201–216.Google Scholar
  2. 2.
    Anthonisen A C, Loehr R C, Prakasam T B S and Srinath E G 1976 Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Contr. Fed. 48, 835–852.Google Scholar
  3. 3.
    Ardakani M S, Rehbock J T and McLaren A D 1974 Oxidation of ammonium to nitrate in a soil column. Soil Sci. Soc. Am. Proc. 38, 96–99.Google Scholar
  4. 4.
    Ausmus B S, Edwards N T and Witkamp M 1976 Microbial immobilization of carbon, nitrogen, phosphorus and potassium: Implications for forest ecosystem processes.In Anderson J M and MacFadyen A (Eds). The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, pp 397–421. London: Blackwell.Google Scholar
  5. 5.
    Ayanaba A and Dart P J (Eds) 1977 Biological Nitrogen Fixation in Farming Systems of the Tropics. Chichester-New York-Brisbane-Toronto: John Wiley and Sons. 377 p.Google Scholar
  6. 6.
    Balderstone W L, Sherr B and Payne W J 1976 Blockage by acetylene of nitrous oxide reduction inPseudomonas perfectomarinus. Appl. Environ. Microbiol. 31, 504–508.PubMedGoogle Scholar
  7. 7.
    Berg B and Staaf H 1980 Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition.In Persson T (Ed.). Structure and Function of Northern Coniferous Forests — An Ecosystem Study. Ecol. Bull. Stockholm 32, 373–390.Google Scholar
  8. 8.
    Berg B and Staaf H 1981 Leaching, accumulation and release of nitrogen in decomposing forest litter.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 163–178.Google Scholar
  9. 9.
    Berg P, Klemedtsson L and Rosswall T 1982 Inhibitory effect of low partial pressures of acetylene on nitrofication. Soil Biol. Biochem. 14, 301–303.CrossRefGoogle Scholar
  10. 10.
    Bhuiya Z H and Walker, N 1977 Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. J. Appl. Bacteriol. 42, 253–257.PubMedGoogle Scholar
  11. 11.
    Bolin B, Crutzen P J, Vitousek P M, Woodmansee R G, Goldberg E D and Cook R B 1983 Interactions of biogeochemical cycles.In Bolin B and Cook R B (Eds). The Biogeochemical Cycles and Their Interactions. SCOPE Report. Chichester-New York-Brisbane-Toronto: John Wiley and Sons. (In press).Google Scholar
  12. 12.
    Bowen G D and Smith S E 1981 The effects of mycorrhizae on nitrogen uptake by plants.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 237–247.Google Scholar
  13. 13.
    Caskey W H and Tiedje J M 1979 Evidence for clostridia as agents of dissimilatory reduction of nitrate to ammonium in soils. Soil Sci. Soc. Am. J. 43, 931–936.Google Scholar
  14. 14.
    Clarholm M 1981 Protozoan grazing of bacteria in soil — impact and importance. Microb. Ecol. 7, 343–350.Google Scholar
  15. 15.
    Döbereiner J, Burris R H and Hollaender A (Eds) 1978 Limitations and Potentials for Biological Nitrogen Fixation in the Tropics. New York-London. Plenum Press. 398 p.Google Scholar
  16. 16.
    Downey R J 1978 Control of fungal nitrate reduction.In Schlessinger, D. (Ed.). Microbiology —1978, pp 320–323. Washington D.C.: American Society for Microbiology.Google Scholar
  17. 17.
    Dreyfus B L and Dommergues Y R 1981 Stem nodules on the tropical legume,Sesbania rostrata.In Gibson A H and Newton E (Eds). Current Perspectives in Nitrogen Fixation, p. 471. Amsterdam-New York-Oxford: Elsevier/North Holland Biomedical Press.Google Scholar
  18. 18.
    Fenn P and Kirk T K 1981 Relationship of nitrogen to the onset and supression of ligninolytic activity and secondary metabolism inPhanerochaete chrysosporium. Arch. Microbiol. 130, 59–65.CrossRefGoogle Scholar
  19. 19.
    Fenn P, Choi S and Kirk T K 1981 Ligninolytic activity ofPhanerochaete chrysosporium: Physiology of supression by NH4+ and l-glutamate. Arch. Microbiol. 130, 66–71.CrossRefGoogle Scholar
  20. 20.
    Focht D D 1974 The effect of temperature, pH and aeration on the production of nitrous oxide and gaseous nitrogen — a zero-order kinetic model. Soil Sci. 118, 173–179.Google Scholar
  21. 21.
    Gallon J R 1981 The oxygen sensitivity of nitrogenase: a problem for biochemists and microrganisms. Trends Biochem. Sci. 6, 19–23.CrossRefGoogle Scholar
  22. 22.
    Gibson A H and Newton W E (Eds) 1981 Current Perspectives in Nitrogen Fixation. Proc. 4th Intl. Symp. Nitrogen Fixation. Amsterdam-New York-Oxford: Elsevier/North Holland Biomedical Press. 534 p.Google Scholar
  23. 23.
    Granhall U (Ed.) 1978 Environmental Role of Nitrogen-fixing Blue-green Algae and Asymbiotic Bacteria. Ecol. Bull. Stockholm 26, 391 p.Google Scholar
  24. 24.
    Hall J 1978 Nitrate-reducing bacteria.In Schlessinger D (Ed.). Microbiology — 1978, pp 296–298. Washington D.C.: American Society for Microbiology.Google Scholar
  25. 25.
    Heal O W and MacLean S F 1975 Comparative productivity in ecosystems — secondary productivity.In Van Dobben W H and Lowe-McConnell R H (Eds). Unifying Concepts in Ecology, pp 89–108. The Hague: Dr. W. Junk and Wageningen: Pudoc.Google Scholar
  26. 26.
    Hynes R K and Knowles R 1978 Inhibition by acetylene of ammonium oxidation inNitrosomonas europea. FEMS Microbiol. Lett. 4, 319–321.CrossRefGoogle Scholar
  27. 27.
    Kaspar H F and Tiedje J M 1981 Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene. Appl. Environ. Microbiol. 41, 705–709.PubMedGoogle Scholar
  28. 28.
    Klemedtsson L, Svensson B H, Lindberg T and Rosswall T 1977 The use of acetylene inhibition of nitrous oxide reductase in quantifying denitrification in soils. Swed. J. Agric. Sci. 7, 179–185.Google Scholar
  29. 29.
    Knowles R 1981 Denitrification.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 315–329.Google Scholar
  30. 30.
    Koike I and Hattori A 1978 Denitrification and ammonia formation in anaerobic coastal sediments. Appl. Environ. Microbiol. 35, 278–282.Google Scholar
  31. 31.
    Kudeyarov V N 1981 Mobility of fixed ammonium in soil.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 281–290.Google Scholar
  32. 32.
    Losada M, Guerrero M G and Vega J M 1981 The assimilatory reduction of nitrogen.In Bothe H and Trebst A (Eds) Biology of Inorganic Nitrogen and Sulphur, pp 30–63. Berlin-Heidelberg-New York: Springer-Verlag.Google Scholar
  33. 33.
    McGill W B, Hunt H W, Woodmansee R G and Reuss J O 1981 Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 49–115.Google Scholar
  34. 34.
    Meiberg J B M, Bruinenberg P M and Harder W 1980 Effect of dissolved oxygen tension in the metabolism of methylated amines inHyphomicrobium X in the absence and presence of nitrate: evidence for ‘aerobic’ denitrification. J. Gen. Microbiol. 120, 453–463.Google Scholar
  35. 35.
    Newton W, Postgate J R and Rodríguez-Barrueco C (Eds) 1977 Recent Developments in Nitrogen Fixation. Proc. 2nd Intl. Symp. London-New York-San Francisco: Academic Press. 622 p.Google Scholar
  36. 36.
    Newton W E and Orme-Johnson W H (Eds) 1980 Nitrogen Fixation, Vol. 1 and 2. Baltimore: University Park Press. 394 and 325 p.Google Scholar
  37. 37.
    Nömmik H 1981 Fixation and biological availability of ammonium in soil clay minerals.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 273–279.Google Scholar
  38. 38.
    Nye P H and Tinker P B 1977 Solute Movement in the Soil-Root System. Oxford-London-Edinburgh-Melbourne: Blackwell Scientific Publications. 342 p.Google Scholar
  39. 39.
    Persson J 1981 Rapporteur's comments: Nitrogen fertilizer effect on nitrogen cycle processes.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 562–564.Google Scholar
  40. 40.
    Purchase B S 1974 The influence of phosphate deficiency on nitrification. Plant and Soil 41, 541–547.CrossRefGoogle Scholar
  41. 41.
    Renner E D and Becker G L 1970 Production on nitric oxide and nitrous oxide during denitrification byCorynebacterium nephridii. J. Bacteriol. 101, 821–826.PubMedGoogle Scholar
  42. 42.
    Robertson G P and Vitousek P M 1981 Nitrification potentials in primary and secondary succession. Ecology 62, 376–386.Google Scholar
  43. 43.
    Rosswall T 1976 The internal nitrogen cycle between vegetation, microorganism and soil.In Svensson B H and Söderlund R (Eds.). Nitrogen, Phosphorus and Sulphur — Global Cycles. Ecol. Bull. Stockholm 22, 157–167.Google Scholar
  44. 44.
    Rosswall T 1981 The biogeochemical nitrogen cycle.In Likens G E (Ed.). Some Perspectives of the Major Biogeochemical Cycles, pp 25–49. SCOPE Report 17. Chichester: John Wiley and Sons, Ltd.Google Scholar
  45. 45.
    Rosswall T and Clarholm M 1974 Characteristics of tundra bacterial populations and a comparison with populations from forest and grassland soils.In Holding A J, Heal O W, MacLean, S F and Flanagan P W (Eds). Soil Organisms and Decomposition in Tundra, pp 93–108. Stockholm: Tundra Biome Steering Committee.Google Scholar
  46. 46.
    Rosswall T and Granhall U 1980 Nitrogen cycling in a subarctic ombrotrophic mire.In Sonesson M (Ed.). Ecology of a Subarctic Mire. Ecol. Bull. Stockholm 30, 209–234.Google Scholar
  47. 47.
    Rosswall T and Vitousek P M (Rapporteurs) 1980 Research priorities and future co-operation.In Rosswall T (Ed.). Nitrogen Cycling in West African Ecosystems, pp 421–428. Stockholm: SCOPE/UNEP International Nitrogen Unit, The Royal Swedish Academy of Sciences.Google Scholar
  48. 48.
    Scarsbrook C E 1965 Nitrogen availability.In Bartholomew, W V and Clark F E (Eds). Soil Nitrogen. Agronomy 10, 481–502. Madison, Wisc.: American Society of Agronomy.Google Scholar
  49. 49.
    Söderlund R and Rosswall T 1982 The nitrogen cycles.In Hutzinger O (Ed.) Environmental Chemistry. Berlin-Heidelberg-New York: Springer Verlag (in press).Google Scholar
  50. 50.
    Söderlund R and Svensson B H 1976 The global nitrogen cycle.In Svensson B H and Söderlund R (Eds). Nitrogen, Phosphorus and Sulphur — Global Cycles. Ecol. Bull. Stockholm 22, 23–73.Google Scholar
  51. 51.
    Sørensen J 1978 Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Appl. Environ. Microbiol. 35, 301–305.Google Scholar
  52. 52.
    Starr J L, Broadbent F E and Nielsen D R 1974 Nitrogen transformations during continuous leaching. Soil Sci. Soc. Am. Proc. 39, 284–289.Google Scholar
  53. 53.
    Tamm C O Holmen H, Popovic B and Wiklander G 1974 Leaching of plant nutrients from soils as a consequence of forestry operations. Ambio 3, 211–221.Google Scholar
  54. 54.
    Tiedje J M, Sørensen J and Chang Y-Y L 1981 Assimilatory and dissimilatory nitrate reduction: perspectives and methodology for simultaneous measurement of several nitrogen cycle processes.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 331–342.Google Scholar
  55. 55.
    Verstraete W 1981 Nitrification.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 303–314.Google Scholar
  56. 56.
    Verstraete W 1981 Nitrification in agricultural systems: Call for control.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm 33, 565–572.Google Scholar
  57. 57.
    Vitousek P M 1980 Nitrogen losses from disturbed ecosystems — Ecological considerations.In Rosswall T (Ed.). Nitrogen Cycling in West African Ecosystems, pp 39–53. Stockholm: SCOPE/UNEP International Nitrogen Unit, The Royal Swedish Academy of Sciences.Google Scholar
  58. 58.
    Vitousek P M 1981 Clear-cutting and the nitrogen cycle.In Clark F E and Rosswall T (Eds). Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. Stockholm, 33, 631–642.Google Scholar
  59. 59.
    Walker N 1978 On the diversity of nitrifiers in nature.In Schlessinger, D. (Ed) Microbiology — 1978, pp 346–347. Washington D.C.:, American Society for Microbiology.Google Scholar
  60. 60.
    Walter H M, Keeney D R and Fillery I R 1979 Inhibition of nitrification by acetylene. Soil Sci. Soc. Am. J. 43, 195–196.Google Scholar
  61. 61.
    Yamada T and Sakaguchi K 1980 Nitrogen fixation associated with hotspring green algae. Arch. Microbiol 124, 161–167.CrossRefGoogle Scholar
  62. 62.
    Yatazawa M and Susilo H 1980 Development of upper stem nodules inAeschynomene indica under experimental conditions. Soil Sci. Plant Nutr. 26, 317–319.Google Scholar
  63. 63.
    Yatazawa M and Yoshida S 1979 Stem nodules ofAeschynomene indica and their capacity of nitrogen fixation. Physiol. Plant. 45, 293–295.Google Scholar
  64. 64.
    Yordy D M and Ruoff K L 1981 Dissimilatory nitrate reduction to ammonia. In Delwiche, C. C. (Ed.). Denitrification, Nitrification and Atmospheric Nitrous Oxide, pp 171–190. New York-Chichester-Brisbane-Toronto: John Wiley.Google Scholar
  65. 65.
    Yoshinari T and Knowles R 1976 Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun. 69, 705–710.CrossRefPubMedGoogle Scholar
  66. 66.
    Yoshinari T, Hynes R and Knowles R 1977 Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9, 177–183.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1982

Authors and Affiliations

  • T. Rosswall
    • 1
  1. 1.Department of MicrobiologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations