Skip to main content
Log in

Plant assimilation and nitrogen cycling

Asimilación de nitrógeno por las plantas y el ciclo de este elemento

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Nitrogen, an abundant and yet limiting nutrient for crop and food production, enters the plant as nitrate or ammonium, or as dinitrogen through biological fixation by procaryotes associated with the plant. Nitrogen incorporation into the soil-plant-animal system is ultimately restricted by rates of biological and industrial fixation. Biological fixation conserves fossil fuel, but fertilization is preferred in most present agriculture. Nitrogen-metabolism research has the practical objectives of allowing more efficient N-fertilizer utilization by plants, including those that fix N2 but benefit from fertilizer_N supplements.

Nitrogen accumulation by harvested crops results in changes in soil acidity, with the direction of change depending on the N-source. There is little information on long-term effects of crop N-nutrition on acidity, and acidity is a critical factor that affects agricultural productivity in many tropical soils. Thus, plant control of pH and the acid/base balance in the soil as a consequence of nitrogen uptake and assimilation are important areas of future research.

Resumen

El nitrógeno, abundante pero sin embargo limitante para los cultivos, entra en las plantas en forma de nitrato o amonio o es incorporado al sistema a través de fijación biológica. La incorporación del nitrógeno al sistema suelo-planta-animal está limitado por las tasas de fijación biológica e industrial. La primera ahorra energía fosil pero la segunda fuente es la predominante en la agricultura moderna. La investigación del metabolismo de nitrógeno tiene objetivos prácticos tales como el permitir un uso mas eficiente de los fertilizantes nitrogenados por los cultivos, incluyendo aquellos que puedan fijar N2 pero se benefician de suplementos de fertilizantes nitrogenados.

La acumulación de nitrogeno en los cultivos trae como consecuencia cambios de acidez en el suelo cuya dirección depende de la forma de nitrógeno utilizada. Aun existe poca información sobre los efectos a largo plazo de la fertilización nitrogenada sobre la acidez del suelo, factor que es determinante de la productividad de muchos suelos en los trópicos. Asi pues, el control de pH por las plantas y el balance de acidez en el suelo son areas de interés para futuras investigaciones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison F E 1955 The enigma of soil nitrogen balance sheets. Adv. Agron. 7, 213–250.

    Google Scholar 

  2. Aslam M, Oaks A and Huffaker R C 1976 Effect of light and glucose on the induction of nitrate reductase and on the distribution of nitrate in etiolated barley leaves. Plant Physiol. 58, 588–591.

    Google Scholar 

  3. Baird L M 1980 Morphogenesis of effective and ineffective root nodules inPhaseolus vulgaris L. Ph.D. Thesis, University of California, Davis, California. 67 p.

    Google Scholar 

  4. Birch H F 1960 Nitrification in soils after different periods of dryness. Plant and Soil 12, 81–96.

    Article  Google Scholar 

  5. Bollard E G 1960 Transport in the xylem. Annu. Rev. Plant Physiol. 11, 141–166.

    Article  Google Scholar 

  6. Breteler H, Cate C H T and Nissen P 1979 Time-course of nitrate uptake and nitrate reductase activity in nitrogen-depleted dwarf bean. Physiol. Plant. 47, 49–55.

    Google Scholar 

  7. Broadbent F E 1968 Turnover of nitrogen in soil organic matter. Pontificiae Academiae Scientarum Scripta Varia 32, 61–88.

    Google Scholar 

  8. Broadbent F E 1973 Sources and sinks of nitrate in soils.In Proc. of the 1st Annual Trace Contaminants Conference, Oak Ridge National Laboratory, National Science Foundation, Washington, D.C., pp 108–119.

  9. Broadbent F E and Carlton A B 1978 Field trials with isotopically labeled nitrogen fertilizer.In Nitrogen in the Environment, Vol. 1, pp 1–41. Nielsen D N and MacDonald J G (Eds). Academic Press, New York.

    Google Scholar 

  10. Broadbent F E and Mikkelsen D S 1968 Influence of placement on uptake of tagged nitrogen by rice. Agric. J. 60, 674–677.

    Google Scholar 

  11. Broadbent F E and Nakashima T 1967 Reversion of fertilizer nitrogen in soils. Soil Sci. Soc. Am. Proc. 31, 648–652.

    Google Scholar 

  12. Brunetti N and Hageman R H 1976 Comparison ofin vivo andin vitro assays of nitrate reductase in wheat (Triticum aestivum L.) seedlings. Plant Physiol. 58, 583–587.

    Google Scholar 

  13. Cassman K G and Munns D N 1980 Nitrogen mineralization as affected by soil moisture, temperature, and depth. Soil Sci. Soc. Am. J. 44, 1233–1237.

    Google Scholar 

  14. Chantarotwong W, Huffaker R C, Miller B L and Granstedt R C 1976In vivo nitrate reduction in relation to nitrate uptake, nitrate content, andin vivo nitrate reductase activity in intact barley seedlings. Plant Physiol. 57, 519–522.

    Google Scholar 

  15. Chapman H D (Ed.) 1965 Diagnostic Criteria for Plants and Soils. Homer D. Chapman, Riverside, California. 319 p.

    Google Scholar 

  16. Coic Y 1971 Influence du métabolisme de nitrate dans les racines sur l'état nutritional de la plante.In Recent Advances in Plant Nutrition Vol. I, pp 217–227. Samish R M (Ed.). Gordon and Breach, New York.

    Google Scholar 

  17. Dahnke W C and Vasey E H 1973 Testing soil for nitrogen. In Soil Testing and Plant Analysis, revised edition, pp 97–114. Walsh L M and Beaton J D (Eds). Soil Sci. Soc. Am. Madison, Wis.

    Google Scholar 

  18. Deckard E L, Lambert R J and Hageman R H 1973 Nitrate reductase activity in corn leaves as related to yields of grain and grain protein. Crop Sci. 13, 343–350.

    Google Scholar 

  19. Delwiche C C 1970 The nitrogen cycle. Sci. Am. 223, 137–146.

    PubMed  Google Scholar 

  20. Dijkshoorn W 1971 Partition of ionic constituents between organs.In Recent Advances in Plant Nutrition, Vol. 2. pp 447–476. Samish R M (Ed.). Gordon and Breach, New York.

    Google Scholar 

  21. Eilrich G L and Hageman R H 1973 Nitrate reductase activity and its relationship to accumulation of vegetative and grain nitrogen in wheat (Triticum aestivum L.). Crop Sci. 13, 59–66.

    Google Scholar 

  22. Felker P and Bandurski R S 1979 Uses and potential uses of leguminous trees for minimal energy input agriculture. Econ. Bot. 33, 172–183.

    Google Scholar 

  23. Fillipe G M, Dale J E and Marriott C 1975 The effect of irradiance on uptake and assimilation of nitrate by young barley seedlings. Ann. Bot. 39, 43–55.

    Google Scholar 

  24. Fox R H and Piekielek W P 1978 Field testing of several nitrogen availability indexes. Soil Sci. Soc. Am. J. 42, 747–750.

    Google Scholar 

  25. Fox R H and Piekielek W P 1978 A rapid method for estimating the nitrogen-supplying capability of a soil. Soil Sci. Soc. Am. J. 42, 751–753.

    Google Scholar 

  26. Franco A A, Fonseca O O M and Marriel I E 1978 Efeito do nitrogênio mineral na actividade da nitrogenase e nitrato-reductase, durante o ciclo da soja no campo. Rev. Bras. Ci. Solo 2, 110–114. (In Portuguese, English summary.)

    Google Scholar 

  27. Franco A A, Pereira J C and Neyra C A 1979 Seasonal patterns of nitrate reductase and nitrogenase activities inPhaseolus vulgaris L. Plant Physiol. 63, 421–424.

    Google Scholar 

  28. George J R, Rhykerd C L and Noller C H 1971 Effect of light intensity, temperature, nitrogen and stage of growth on nitrate accumulation and dry matter production of a sorghum × Sudan Grass hybrid. Agron. J. 63, 413–415.

    Google Scholar 

  29. Gibson A H 1966 The carbohydrate requirements for symbiotic nitrogen fixation: a ‘whole plant’ growth analysis approach. Aust. J. Biol. Sci. 19, 499–515.

    Google Scholar 

  30. Graham P H and Rosas J C 1977 Growth and development of indeterminate bush and climbing cultivars ofPhaseolus vulgaris L. inoculated with Rhizobium. J. Agric. Sci. Cambr. 88, 503–508.

    Google Scholar 

  31. Greidamus T, Peterson A, Schrader L E and Dana M N 1972 Essentiality of ammonium for cranberry nutrition. J. Am. Soc. Hortic. Sci. 97, 272–277.

    Google Scholar 

  32. Hallmark W B and Huffaker R C 1978 The influence of ambient nitrate, temperature, and light on nitrate assimilation in Sudan grass seedlings. Physiol. Plant. 44, 147–152.

    Google Scholar 

  33. Harper J E and Hageman R H 1972 Canopy and seasonal profiles of nitrate reductase in soybeans (Glycine max L. Merr.) Plant Physiol. 49, 146–154.

    Google Scholar 

  34. Heimer Y M and Filner P 1971 Regulation of the nitrate assimilation pathway in cultured tobacco cells. III. The nitrate uptake system. Biochem. Biophys. Acta 230, 362–372.

    PubMed  Google Scholar 

  35. Helyar K R 1976 Nitrogen cycling and soil acidification. J. Aust. Inst. Agric. Sci. 42, 217–221.

    Google Scholar 

  36. Herridge D F, Atkins C A, Pate J S and Rainbird R M 1978 Allantoin and allantoic acid in the nitrogen economy of the cowpea (Vigna unguiculata [L.] Walp.). Plant Physiol. 62, 495–498.

    Google Scholar 

  37. Jackson W A 1978 Nitrate acquisition and assimilation by higher plants: processes in root systems.In Nitrogen in the Environment, Vol. 2. Soil-Plant-Nitrogen Relationships, pp 45–88. Nielsen D R and MacDonald J G (Eds). Academic Press, New York.

    Google Scholar 

  38. Jackson W A, Flesher D and Hageman R H 1973 Nitrate uptake by dark-grown corn seedlings. Some characteristics of apparent induction. Plant Physiol. 51, 120–127.

    Google Scholar 

  39. Kafkafi U, Bar-Yosef B and Hadas A 1978 Fertilization decision model. A synthesis of soil and plant parameters in a computerized program. Soil Sci. 125, 261–268.

    Google Scholar 

  40. Lea P L and Miflin B J 1974 Alternative route for nitrogen assimilation in higher plants. Nature London 251, 614–616.

    Article  PubMed  Google Scholar 

  41. McClure P R and Israel D W 1979 Transport of nitrogen in the xylem of soybean plants. Plant Physiol. 64, 411–416.

    Google Scholar 

  42. McCree K J and Silsbury J H 1978 Growth and maintenance requirements of subterranean clover. Crop Sci. 18, 13–18.

    Google Scholar 

  43. Minchin F R and Pate J S 1973 The carbon balance of a legume and the functional economy of its root nodules. J. Exp. Bot. 24, 259–271.

    Google Scholar 

  44. Nyatsanga T and Pierre W H 1973 Effect of nitrogen fixation by legumes on soil acidity. Agron. J. 65, 936–940.

    Google Scholar 

  45. Parker M B and Baswell F C 1980 Foliage injury, nutrient intake, and yield of soybeans as influenced by foliar fertilization. Agric. J. 72, 110–113.

    Google Scholar 

  46. Pate J S 1973 Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol. Biochem. 5, 109–119.

    Article  Google Scholar 

  47. Pate J S 1980 Transport and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. 31, 313–340.

    Article  Google Scholar 

  48. Persall W H 1950 The investigation of wet soils and its agricultural implications. Emp. J. Exp. Agric. 18, 289–298.

    Google Scholar 

  49. Phillips D A 1980 Efficiency of symbiotic nitrogen fixation in legumes. Annu. Rev. Plant Physiol. 31, 29–49.

    Article  Google Scholar 

  50. Pierre W H and Banwart W L 1973 The excess-based and excess-base/nitrogen ratio of various crop species and plant parts. Agron. J. 64, 91–96.

    Google Scholar 

  51. Rao K P and Rains D W 1976 Nitrate absorption by barley. I. Kinetics and energetics. Plant Physiol. 57, 55–58.

    Google Scholar 

  52. Raven J A and Smith F A 1976 Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol. 76, 415–431.

    Google Scholar 

  53. Sanchez P A 1976 Properties and Management of Soils in the Tropics. John Wiley and Sons, New York. 618 p.

    Google Scholar 

  54. Schloemer R H and Garrett R H 1974 Nitrate transport inNeurospora crassa. J. Bacteriol. 118, 259–269.

    PubMed  Google Scholar 

  55. Schrader L E, Beevers L and Hageman R H 1967 Differential effects of chloramphenicol on the induction of nitrate and nitrate reductase in green leaf tissue. Biochem. Biophys. Res. Commun. 26, 14–17.

    Article  PubMed  Google Scholar 

  56. Shields J A, Paul E A, Lowe W E and Parkinson D 1973 Turnover of microbial tissue in soil under field conditions. Soil Biol. Biochem. 5, 753–764.

    Article  Google Scholar 

  57. Smith F A and Raven J A 1979 Intracellular pH and its regulation. Annu. Rev. Plant Physiol. 30, 289–311.

    Article  Google Scholar 

  58. Smith S J, Young L B and Miller G E 1977 Evaluation of soil nitrogen mineralization potentials under modified field conditions. Soil Sci. Soc. Am. J. 41, 74–76.

    Google Scholar 

  59. Stanford G 1973 Rationale for optimum nitrogen fertilization in corn production. J. Environ. Qual. 2, 159–166.

    Google Scholar 

  60. Stanford G 1978 Evaluation of ammonium release by alkaline permanganate extraction as an index of soil nitrogen availability. Soil Sci. 126, 244–253.

    Google Scholar 

  61. Stanford G and Epstein E 1974 Nitrogen mineralization-water relations in soil. Soil Sci. Soc. Am. Proc. 38, 103–107.

    Google Scholar 

  62. Stanford G and Smith S J 1972 Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 36, 465–472.

    Google Scholar 

  63. Stanford G and Smith J 1978 Oxidative release of potentially mineralizable soil nitrogen by acid permanganate extraction. Soil Sci. 126, 210–218.

    Google Scholar 

  64. Stanford G, Frere M G and Schwaninger D H 1973 Temperature coefficient of soil nitrogen mineralization. Soil Sci. 115, 321–323.

    Google Scholar 

  65. Streeter J G 1979 Allantoin and allantoic acid in tissues and stem exudates from field-grown soybean plants. Plant Physiol. 63, 478–480.

    Google Scholar 

  66. Sumner D C, Martin W E and Echegaray H S 1965 Dry matter and protein yields and nitrate content of piper Sudan grass (Sorghum sudanense [Piper] Stapf.) in response to nitrogen fertilization. Agron. J. 57, 351–354.

    Google Scholar 

  67. Thibodeau P S and Jaworsky E G 1975 Patterns of nitrogen utilization in the soybean. Planta 127, 133–147.

    Article  Google Scholar 

  68. Westerman D T and Crothers S E 1980 Measuring soil nitrogen mineralization under field conditions. Agr. J. 72, 1009–1012.

    Google Scholar 

  69. Yoneyama T and Kumazawa K 1974 A kinetic study of the assimilation of15N-labelled ammonium in rice seedlings. Plant Cell Physiol. 15, 655–659.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, A.A., Muns, D.N. Plant assimilation and nitrogen cycling. Plant Soil 67, 1–13 (1982). https://doi.org/10.1007/BF02182751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02182751

Key words

Navigation