Skip to main content

Changes in yield ofin-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring

Abstract

Triazines and derivatives of phenylurea, which are often found in outdoor water samples, induce specific changes in the yield of thein-vivo chlorophyll α-fluorescence of PSII. These changes are correlated quantitatively with the concentration of the herbicides and can therefore be used to set-up a low-price monitor system. In order to detect selectively the herbicide-sensitive part of the fluorescence emission a pulse amplitude modulated fluorimeter was used. The bioassay system was optimised with respect to test organism, growing and measuring conditions. The relationship between fluorescence yield and herbicide concentrations were experimentally determined for the triazines atrazine and simazine and the phenylurea herbicide DCMU and mathematically fitted (r=0.99). The I50-values were 0.9 µM for DCMU, 2.2 µM for simazine and 3.3 µM for atrazine. The detection limit of about 0.5 µM clearly shows that the sensitivity of this bioassay system is too low to reach the requirements of the drinking water regulation. However, due to its insensitivity against complex water matrices, there is good hope to combine this fluorometric bioassay with a potent herbicide preconcentration method like a solid-phase extraction procedure.

This is a preview of subscription content, access via your institution.

Abbreviations

Chl:

chlorophyll

DCMU:

dichlorophenyldimethylurea

F:

fluorescence

F m :

maximal fluorescence

Fo :

minimal fluorescence

F o :

variable fluorescence

GC:

gas chromatography

HPLC:

High performance liquid chromatography

MS:

mass spectroscopy

PAM:

pulse-amplitude-modulated fluorometer

PSII:

photosystem II

qN:

non-photochemical quenching

I50 :

concentration required for 50% inhibition of electron transport

CCCP:

carbonyl cyanide m-chlorophenylhydrazon

References

  • Bringmann G, Kühn R (1978) Grenzwerte der Schadwirkung wassergefährdender Stoffe gegen Blaualgen (Microcystis aeruginosa) und Grünalgen (Scenedesmus quadricauda) im Zellvermehrungshemmtest. Vom Wasser 50: 45–60.

    Google Scholar 

  • Büchel C, Wilhelm C (1993)In-vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives. J. Photochem. Photobiol. (in press).

  • Buman RA, Gealy DR, Fuerst EP (1992a) Relationship between temperature and triazinone herbicide activity. I. Herbicide binding to thylakoid membranes. Pest. Biochem. Physiol. 43: 22–28.

    Google Scholar 

  • Buman RA, Gealy DR, Fuerst EP (1992b) Relationship between temperature and triazinone herbicide activity. II. Herbicide absorption by protoplasts and herbicide inhibition of photosynthetic electron transport. Pest. Biochem. Physiol. 43: 29–36.

    Google Scholar 

  • Chow WS, Hope AB, Anderson JM (1990) A reassesment of the use of herbicide binding to measure photosystem II reaction centres in plant thylakoids. Photosynth. Res. 24: 109–113.

    Google Scholar 

  • Derenne S, Largeau C, Berkaloff C, Rousseau B, Wilhelm C, Hatcher PG (1992) Non-hydrolysable macromolecular constitutents from outer walls ofChlorella fusca andNanochlorum eurcaryotum. Phytochemistry 31: 1923–1929.

    Google Scholar 

  • Draber W, Kluth JF, Tietjen K, Trebst A (1991) Herbizide in der Photo syntheseforschung. Angew. Chem. 103: 1650–1663.

    Google Scholar 

  • Fedtke C (1982) Biochemistry and physiology of herbicide action. Springer Verlag, Berlin, Heidelberg, 23–49.

    Google Scholar 

  • Govindjee, Satoh K (1986) Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. In: Govindjee, Amesz J (eds), Light emission by plants and bacteria. Academic Press, New York, 479–533.

    Google Scholar 

  • Grandet M, Weil, L Quentin K-E (1988) Gaschromatographische Bestimmung der Triazin-Herbizide und ihrer Metabolite in Wasser. Z. Wasser-Abwasser-Forsch. 21: 21–24.

    Google Scholar 

  • Haddad G, Ponte-Freitas A, Ravanel P, Tissut M (1992) Leaf penetration and foliar transfer of isoproturon, from a stirred medium to the D1-protein target. Plant Physiol. Biochem. 30: 173–180.

    Google Scholar 

  • Hein D, Lowis J, Münzinger A (1991) Erfahrungen mit dem Leuchtbakterientest bei der Überwachung kommunaler und industrieller Abwässer. Vom Wasser 73: 243–248.

    Google Scholar 

  • Huner NPA, Öquist G. Sundblad LG (1992) Low-measuring temperature-induced artificial increase in chlorophylla fluorescence. Plant Physiol. 98: 749–752.

    Google Scholar 

  • Janssen LHJ, van Hasselt PR (1988) Temperature-induced alterations ofin vivo chlorophylla fluorescence induction in cucumber as affected by DCMU. Photosynth. Res. 15: 153–162.

    Google Scholar 

  • Janssen LHJ, Wamts HE, van Hasselt PR (1992) Temperature dependence of chlorophyll fluorescence induction and photosynthesis in tomato as affected by temperature and light dependence during growth. J. Plant Physiol. 139: 549–554.

    Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrometric equations for determining chlorophyllsa, b, c 1, andc 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194.

    Google Scholar 

  • Jursinic PA, Mccarthy SA, Bricker TM, Stemler A (1991) Characteristics of two atrazine-binding sites that specifically inhibit photosystem-II function. Biochim. Biophys. Acta 1059: 312–322.

    Google Scholar 

  • Kautsky H, Franck U (1943) Chlorophyllfluoreszenz und Kohlensäureassimilation. X. Mitteilung: Chlorophyll-fluoreszenz von Ulva lactuca und ihre Abhängigkeit von Temperatur und Lichtintensität. Biochem. Z. 315: 156–176.

    Google Scholar 

  • Kautsky H, Hirsch A. (1934) Chlorophyllfluoreszenz und Kohlensäureassimilation. I. Mitteilung: Das Fluoreszenverhalten grüner Pflanzen. Biochem. Z. 274: 423–434.

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann. Plant Physiol. Plant Mol. Biol. 42: 313–349.

    Google Scholar 

  • Laasch H, Pfister K, Urbach W (1981) Comparative binding of photosystem II-herbicides to isolated thylakoid membranes and intact algae. Z. Naturforsch. 36c: 1041–1049.

    Google Scholar 

  • Noack U (1988) Biotechnologische Nutzung von Mikroalgen. BioEngineering 3: 251–252.

    Google Scholar 

  • Oehmichen U, Karrenbrock F, Haberer K (1987) Determination of N-pesticides in natural waters. Fresenius Z. Anal. Chem. 327: 715–719.

    Google Scholar 

  • Renger G (1986) Herbicide interaction with photosystem II: recent developments Physiol Veg. 24: 509–521.

    Google Scholar 

  • Reupert R, Brausen G, Plöger E (1992) Analytical method for the determination of pesticides by micro-HPLC. GIT Special Chromatographie 1/92.

  • Reupert R, Plöger E (1989) Bestimmung stickstoffhaltiger Pflanzenbehandlungsmittel in Trink-, Grund- und Oberflächenwasser. Vom Wasser 72: 211–233.

    Google Scholar 

  • Samuelsson G, Öquist G. (1977) A method for studying photosynthetic capacities of unicellular algae based onin-vivo chlorophyll fluorescence. Physiol. Plant 40: 315–319.

    Google Scholar 

  • Sayk F, Schmidt C (1986) Algen-Fluoreszenz-Autometer, eine computergesteuerte Biotest-Meßapparatur. Z. Wasser-Abwasser Forsch 19: 182–184.

    Google Scholar 

  • Schlett C (1991) Multi-residue of pesticides by HPLC after solid-phase extraction. Fresenius J. Anal. Chem. 339: 344–347.

    Google Scholar 

  • Schlösser UG (1982) Sammlung von Algenkulturen. Ber. Dtsch. bot. Ges. 95: 181–276.

    Google Scholar 

  • Schmidt C (1983) Actual standard and further development of an algal fluoresence bioassay. Ecotoxicology and Environmental Safety 7: 276–283.

    PubMed  Google Scholar 

  • Schmidt C (1987) Anwendungsbereiche und Ergebnisse des Algenfluoreszenztests. Arch. Hydrobiol. Beih. 29, 107–116.

    Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth. Res. 9: 261–272.

    Google Scholar 

  • Schreiber U, Neubauer C, Schliwa U (1993) PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research. Photosynth. Res. (in press).

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a type of modulation fluorometer. Photosynth. Res. 10: 51–62.

    Google Scholar 

  • Senger H, Frickel-Faulstich B (1974) The regulation of electron flow in synchronized cultures of green algae. In: Avron M(ed.), Proc. 3rd Int. Congr. on Photosynthesis. Elsevier, Amsterdam, 715–727.

    Google Scholar 

  • Shochat S, Owens GC, Hubert P, Ohad I (1982) The dichlorophenyldimethylurea-binding site in thylakoids ofChlamydomonas reinhardtii. Biochim. Biophys. Acta 681: 21–31.

    Google Scholar 

  • Siderer Y, Lavintman N, Gilon C, Ohad I (1984) A nitroxide diuron analog as a probe for the mode of action of herbicides. Z. Naturforsch. 39c: 342–346.

    Google Scholar 

  • Starr RC, Zeikus JA (1987) Utex. The culture collection of algae at the University of Texas, Austin. J. Phycol. 23: 37–37. (Supplement to September 1987).

    Google Scholar 

  • Strotmann, H (1966) Kinetische Untersuchungen an Teilschritten der Nitratreduktion vonChlorella im Licht. Dissertation, Joh.-Wolfgang von Goethe Universität Frankfurt.

  • Tischer W, Strotmann H (1977) Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim. Biophys. Acta 460: 113–125.

    PubMed  Google Scholar 

  • Van Reensen JJS (1982) Molecular mechanism of herbicide action near photosystem II. Physiol. Plant. 54: 515–521.

    Google Scholar 

  • Van Wijk KJ, van Hasselt PR (1990) The quantum efficiency of PSII and its relation to non-photochemical quenching of chlorophyll fluorescence; the effect of measuring — and growth temperature. Photosynth. Res. 25: 233–240.

    Google Scholar 

  • Verordnung über Trinkwasser und über Wasser für Lebensmittelbetriebe (Trinkwasserverordnung) vom 22. Mai 1986. BGBl.I, S.760.

  • Weston LH, Robinson PK (1991) Detection and quantification of triazine herbicides using algal cell fluorescence. Biotechnology Techniques 5 (5): 327–330.

    Google Scholar 

  • Wiegand-Rosinus M, Barth U, Obst U, Haberer K (1989) Sensitivität zweier handelsüblicher Biotests gegenüber ausgewählten Schadstoffen. Vom Wasser 73: 449–456.

    Google Scholar 

  • Wiessner W (1968) Enzymaktivität und Kohlenstoffassimilation bei Grünalgen unterschiedlichen ernährungsphysiologischen Typs. Planta 79: 92–98.

    Google Scholar 

  • Ziegler K, Egle K (1965) Zur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Überprüfung der spektralphotometrischen Chlorophyllbestimmung. Beitr. Biol. Pfl. 41: 11–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author for correspondence

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conrad, R., Büchel, C., Wilhelm, C. et al. Changes in yield ofin-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J Appl Phycol 5, 505–516 (1993). https://doi.org/10.1007/BF02182509

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02182509

Key words

  • fluorescence
  • bioassay
  • PSII herbicides
  • algae
  • triazines
  • phenylureas