Plant and Soil

, Volume 54, Issue 1, pp 51–63 | Cite as

Nitrogenase activity of pea bacteroids as affected by carbohydrates and ammonium chloride

  • F. Houwaard
Article

Summary

Regulation and efficiency of the nitrogen-fixing system of the rhizobium-pea symbiosis were investigated. Acetylene reduction of detached root nodules was measured with various substrates added. Succinate, fumarate and malate were most effective in stimulating nitrogenase activity; glucose, pyruvate and citrate were also active. Acetylene reducing activity of detached nodules was inhibited by the addition of NH4Cl, irrespective of the substrate present. Nitrogenase activity of isolated bacteroids was not influenced by NH4Cl.

Respiration of detached nodules was not significantly stimulated by the addition of substrates. Ammonium chloride did not influence respiration. With detached nodules and isolated bacteroids a consumption of about 16 g of carbohydrate per g of nitrogen fixed could be calculated. Detached nodules produced more hydrogen relative to the acetylene reduced than did isolated bacteroids and intact plants.

Results obtained indicate that the regulation of nitrogenase activity and the efficiency of substrate consumption depend on environmental conditions.

Key Words

Acetylene reduction Ammonium chloride Bacteroids Nitrogenase Pea Pisum sativum Respiration Rhizobium leguminosarum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniw, L. D. and Sprent, J. I. 1978 Primary metabolites ofPhaseolus vulgaris nodules. Phytochemistry17, 675–678.Google Scholar
  2. 2.
    Appleby, C. A. 1969 Electron transport systems ofRhizobium japonicum. I. Haemoprotein P-450, other CO-reactive pigments, cytochromes and oxidases in bacteroids from N2-fixing root nodules. Biochim. Biophys. Acta173, 71–87.PubMedGoogle Scholar
  3. 3.
    Bergersen, F. J. and Turner G. L. 1967 Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochim. Biophys. Acta141, 507–515.PubMedGoogle Scholar
  4. 4.
    Bergersen, F. J. and Turner, G. L. 1975 Leghaemoglobin and the supply of O2 to nitrogen. fixing root nodule bacteroids: presence of two oxidase systems and ATP production at low free O2 concentration. J. Gen. Microbiol.91, 345–354.PubMedGoogle Scholar
  5. 5.
    Bergersen, F. J., Turner, G. L., Gibson, A. H. and Dudman, W. F. 1976 Nitrogenase activity and respiration of cultures ofRhizobium spp. with special reference to concentration of dissolved oxygen. Biochim. Biophys. Acta444, 164–174.PubMedGoogle Scholar
  6. 6.
    Bethlenfalvay, G. J. and Phillips, D. A. 1977 Effect of light intensity on efficiency of carbon dioxide and nitrogen reduction inPisum sativum L. Plant Physiol.60, 868–871.Google Scholar
  7. 7.
    Bethlenfalvay, G. J., Abu-Shakra, S. S. and Phillips, D. A. 1978 Interdependence of nitrogen nutrition and photosynthesis inPisum sativum L. I. Effect of combined nitrogen on symbiotic fixation and photosynthesis. Plant Physiol.62, 127–130.Google Scholar
  8. 8.
    Brotonegoro, S. 1974 Nitrogen fixation and nitrogenase activity ofAzotobacter chroococcum. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands.Google Scholar
  9. 9.
    Bulen, W. A. and LeComte, J. R. 1966 The nitrogenase system fromAzotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution and ATP hydrolysis. Proc. Natl. Acad. Sci. U.S.A.56, 979–986.PubMedGoogle Scholar
  10. 10.
    Dalton, H. and Postgate, J. R. 1969 Effect of oxygen on growth ofAzotobacter chroococcum in batch and continuous cultures. J. Gen. Microbiol.54, 463–473.Google Scholar
  11. 11.
    Houwaard, F. 1978 Influence of ammonium chloride on the nitrogenase activity of nodulated pea plants (Pisum sativum). Appl. Environ. Microbiol.35, 1061–1065.PubMedGoogle Scholar
  12. 12.
    Houwaard, F. 1979 Effect of ammonium chloride and methionine sulfoximine on the acetylene reduction of detached root nodules of peas (Pisum sativum). Appl. Environ. Microbiol.37, 73–79.Google Scholar
  13. 13.
    Keele, B. B., Hamilton, P. B. and Elkan, G. H. 1969 Glucose catabolism inRhizobium japonicum. J. Bacteriol.97, 1184–1191.PubMedGoogle Scholar
  14. 14.
    Keele, B. B., Hamilton, P. B. and Elkan, G. H. 1970 Gluconate catabolism inRhizobium japonicum. J. Bacteriol.101, 698–704.PubMedGoogle Scholar
  15. 15.
    Kurz, W. G. W. and LaRue, T. A. 1977 Citric acid cycle enzymes and nitrogenase in nodules ofPisum sativum. Can. J. Microbiol.23, 1197–1200.PubMedGoogle Scholar
  16. 16.
    Lambers, H. 1979 Energy metabolism in higer plants in different environments. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands.Google Scholar
  17. 17.
    Lawrie, A. C. and Wheeler, C. T. 1975 Nitrogen fixation in the root nodules ofVicia faba L. in relation to the assimilation of carbon. II. The dark fixation of carbon dioxide. New Phytol.74, 437–445.Google Scholar
  18. 18.
    Mahon, J. D. 1977 Respiration and the energy requirement for nitrogen fixation in nodulated pea roots. Plant Physiol.60, 817–821.Google Scholar
  19. 19.
    Minchin, F. R. and Pate, J. S. 1973 The carbon balance of a legume and the functional economy of its root nodules. J. Exp. Bot.24, 259–271.Google Scholar
  20. 20.
    Mulongoy, K. and Elkan, G. H. 1977 Glucose catabolism in two derivatives of aRhizobium japonicum strain differing in nitrogen-fixing efficiency. J. Bacteriol.131, 179–187.PubMedGoogle Scholar
  21. 21.
    Phillips, D. A. 1974 Promotion of acetylene reduction byRhizobium-soybean associationsin vitro. Plant Physiol.54, 654–655.Google Scholar
  22. 22.
    Ruiz-Arguëso, T., Hanus, J. and Evans, H. J. 1978 Hydrogen production and uptake by pea nodules as affected by strains ofRhizobium leguminosarum. Arch. Microbiol.116, 113–118.Google Scholar
  23. 23.
    Ryle, G. J. A., Powell, C. E. and Gordon, A. J. 1979 The respiratory costs of nitrogen fixation in soyabean, cowpea, and white clover. I. Nitrogen fixation and the respiration of the nodulated root. J. Exp. Bot.30, 135–144.Google Scholar
  24. 24.
    Schubert, K. R. and Evans, H. J. 1976 Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc. Natl. Acad. Sci. U.S.A.73, 1207–1211.Google Scholar
  25. 25.
    Scowcroft, W. R., Gibson, A. H. and Pagan, J. D. 1976 Nitrogen fixation in cultured cowpea rhizobia: inhibition and regulation of nitrogenase activity. Biochem. Biophys. Res. Commun.73, 516–523.PubMedGoogle Scholar
  26. 26.
    Shanmugam, K. T., O'Gara, F., Andersen, K. and Valentine, R. C. 1978 Biological nitrogen fixation. Annu. Rev. Plant. Physiol.29, 263–276.Google Scholar
  27. 27.
    Sprent, J. I. and Gallacher, A. 1976 Anaerobiosis in soybean root nodules under water stress. Soil Biol. Biochem.8, 317–320.Google Scholar
  28. 28.
    Stovall, I. and Cole, M. 1978 Organic acid metabolism by isolatedRhizobium japonicum bacteroids. Plant Physiol.61, 787–790.Google Scholar
  29. 29.
    Straten, J. van and Roelofsen, W. 1976 Improved method for preparing anaerobic bacteroid suspensions ofRhizobium leguminosarum for the acetylene reduction assay. Appl. Environ. Microbiol.31, 859–863PubMedGoogle Scholar
  30. 30.
    Streeter, J. G. and Bosler, M. E. 1976 Carbohydrates in soybean nodules: identification of compounds and possible relationships to nitrogen fixation. Plant Sci. Lett.7, 321–329.Google Scholar
  31. 31.
    Tuzimura, K. and Meguro, H. 1960 Respiration substrate ofRhizobium in the nodules. J. Biochem.47, 391–397.Google Scholar
  32. 32.
    Houwaard, F. 1979 Effect of combined nitrogen on symbiotic nitrogen fixation in pea plants. Ph. D. Thesis, Agric. Univ. Wageningen, The Netherlands.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1980

Authors and Affiliations

  • F. Houwaard
    • 1
  1. 1.Laboratory of MicrobiologyAgricultural UniversityWageningenThe Netherlands

Personalised recommendations