Plant and Soil

, Volume 72, Issue 2–3, pp 167–173 | Cite as

Genetically determined adaptations in roots to nutritional stress: correlation of structure and function

  • D. Kramer


Many plant species are able to adapt to problem soil conditions such as salt toxicity and nutrient deficiencies by modifying transport systems in their roots. This is frequently correlated with anatomical and ultrastructural developments. The role of such developments is discussed in two specific cases: soil salinity and iron deficiency.

Key words

Iron deficiency Nutritional stress Soil salinity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown J C 1978 Mechanism of iron uptake by plants. Plant, Cell Environ. 1, 249–257.Google Scholar
  2. 2.
    Davis R F and Higinbotham N 1976 Electrochemical gradient and K+ and Cl fluxes in excised corn roots. Plant Physiol. 57, 129–136.Google Scholar
  3. 3.
    Dunlop J and Bowling D J F 1971 The movement of ions into the xylem exudate of maize roots. I. Profiles of membrane potential and vacuolar potassium activity across the root. J. Exp. Bot. 22, 434–444.Google Scholar
  4. 4.
    Epstein E 1972 Mineral Nutrition of Plants: Principles and Perspectives. New York: Wiley and Sons.Google Scholar
  5. 5.
    Jacoby B 1965 Sodium retention in excised bean stems. Physiol. Plant. 18, 730–739.Google Scholar
  6. 6.
    Jeschke, W D 1980 Roots: cation selectivity and compartmentation, involvment of protons and regulation.In Plant Membrane Transport: Current Conceptional Issues. Eds. R M Spanswick, W J Lucas and J Dainty. Elsevier/North Holland Biomedical Press.Google Scholar
  7. 7.
    Kramer D 1979 Ultrastructural observations on developing leaf bladder cells ofMesembryanthemum crystallinum L. Flora 168, 193–204.Google Scholar
  8. 8.
    Kramer D 1981 Structure and function in absorption and transport of nutrients.In Structure and Function of Roots. pp 303–307. Eds. R Brouwer, O, Gasparikova, J Kolek and B C Loughman. Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/London.Google Scholar
  9. 9.
    Kramer D, Läuchli A, Yeo A R and Gullasch J 1977 Transfer cells in roots ofPhaseolus coccineus: Ultrastructure and possible function in exclusion of sodium from the shoot. Ann. Bot. 41, 1031–1040.Google Scholar
  10. 10.
    Kramer D and Preston J 1978 A modified method for X-ray microanalysis of bulk-frozen plant tissue, and its application to the problem of salt exclusion in mangrove roots.In Microsc. Acta Suppl. 2. Microprobe Analysis in Biology and Medicine. Eds. P Echlin and R Kaufmann. Hirzel, Stuttgart.Google Scholar
  11. 11.
    Kramer D, Anderson W P and Preston J 1978 Transfer cells in the root epidermis ofAtriplex hastata L. as response to salinity: a comparative cytological and X-ray microprobe investigation. Aust. J. Plant Physiol. 5, 739–747.Google Scholar
  12. 12.
    Kramer D, Römheld, V, Landsberg E and Marschner H 1980 Induction of transfer cell formation by iron deficiency in the root epidermis ofHelianthus annuus L. Planta, Berlin 147, 325–339.Google Scholar
  13. 13.
    Läuchli A, Spurr A R and Epstein E 1971 Lateral transport of ions into the xylem of corn roots. II. Evaluation of a stelar pump. Plant Physiol. 48, 118–124.Google Scholar
  14. 14.
    Läuchli A, Kramer D, Pitman M G and Lüttge U. 1974 Ultrastructure of xylem parenchyma cells of barley roots in relation to ion transport to the xylem. Planta, Berlin 119, 85–99.Google Scholar
  15. 15.
    Lüchli A, Pitman M G Lüttge U, Kramer D and Ball, E 1978 Are developing xylem vessels the site of exudation from root to shoot? Plant, Cell Environ. 1, 217–223.Google Scholar
  16. 16.
    Marschner H, Kalisch A and Römheld V 1974 Mechanism of iron uptake in different plant species.In Plant Analysis and Ferilizer Problems. Ed. J. Wehrmann. pp. 273–281. German Society of Plant Nutrition.Google Scholar
  17. 17.
    Marschner H and Ossenberg-Neuhaus H 1976 Langstreckentransport von Natrium in Bohnenpflanzen. Z. Pflanzenernaehr. Dueng. Bodenkd. 139, 129–142.Google Scholar
  18. 18.
    Pitman M G 1972 Uptake and transport of ions in barley seedlings. II. Evidence for two active stages in transport to the shoot. Aust. J. Biol. Sci. 25, 243–257.Google Scholar
  19. 19.
    Poljakoff-Mayber A 1975 Morphological and anatomical changes in plants as a response to salinity stress.In Plants in Saline Environments. Eds. A Poljakoff-Mayber and J Gale. Springer, Berlin, Heidelberg, New York.Google Scholar
  20. 20.
    Rains D W 1969 Sodium and potassium absorption by stem tissue of bean and cotton. Plant Physiol. 44, 547–554.Google Scholar
  21. 21.
    Robards A W and Robb M E 1974 The entry of ions and molecules into roots: an investigation using electron-opaque tracers. Planta, Berlin 120, 1–12.Google Scholar
  22. 22.
    Stelzer R, Läuchli A and Kramer D 1975 Interzelluläre Transportwege des Chlorids in Wurzeln intakter Gerstepflanzen. Cytobiologie 10, 449–457.Google Scholar
  23. 23.
    Stelzer R and Läuchli A 1977 Salz- und Überflutungstoleranz vonPuccinellia peisonis. II. Strukturelle Differenzierung der Wurzel in Beziehung zur Funktion. Z. Pflanzenphysiol. 84, 95–108.Google Scholar
  24. 24.
    Tanton T W and Crowdy S H 1972 Water pathways in higher plants. II. Water pathways in roots. J. Exp. Bot. 23, 600–618.Google Scholar
  25. 25.
    Steveninck R F M van, Steveninck M E van, Hall T A and Peters P D 1974 X-ray microanalysis and distribution of halides inNitella translucens.In Electron Microscopy 1974. Eds. J V Sandars and D J Goodchild. Canberra A. C. T.: The Australian Academy of Sciences.Google Scholar
  26. 26.
    Steveninck R F M van Steveninck M E van, Stelzer R and Läuchli A. 1980 Electron probe X-ray microanalysis of ion distribution inLupinus luteus L. seedlings exposed to salinity stress. pp 489–490.In Plant Membrane Transport: Current Conceptional Issues. Eds. R M Spanswick, W J Lucas and J Dainty. Elsevier/North Holland Biomedical Press.Google Scholar
  27. 27.
    Yeo A R, Kramer D, Läuchli A and Gullasch J 1977 Ion distribution in salt stressed matureZea mays roots in relation to ultrastructure and retention of sodium. J. Exp. Bot. 28, 17–29.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1983

Authors and Affiliations

  • D. Kramer
    • 1
  1. 1.Botanisches Institut, Fachbereich BiologieTechnische Hochschule DarmstadtDarmstadtFRG

Personalised recommendations