Journal of Statistical Physics

, Volume 87, Issue 1–2, pp 449–457 | Cite as

On localization of vorticity in Lorentz lattice gases

  • L. A. Bunimovich
Short Communications


We study the generalized deterministic Lorentz lattice gases, in a fixed as well as in varying environments, in lattices with dimensionsd≥3. We show that bounded orbits (“vortices”) in these models are often contained in some lower dimensional subsets (“vortex sheets”) of these lattices.

Key Words

Lorentz gas cellular automata local scattering rules time reversibility vortices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. D. Cohen, New types of diffusion in lattice gas cellular automata, inMacroscoppic Simulations of Complex Hydrodynamic Phenomena, M. Mareschal and B. L. Holland, eds. (Plenum Press, New York, 1992), pp. 137–152.Google Scholar
  2. 2.
    J. M. F. Gunn and M. Ortuño, Percolation and motion in a simple random environment,J. Phys. A 18:1095 (1985).Google Scholar
  3. 3.
    T. W. Rujgrok and E. G. D. Cohen, Deterministic lattice gas models,Phys. Lett. A 133:415 (1988).Google Scholar
  4. 4.
    J. R. Dorfman, M. H. Ernst, and D. Jacobs, Dynamical chaos in the Lorentz lattice gas,J. Stat. Phys. 81:497 (1995).Google Scholar
  5. 5.
    H. A. Lorentz, The motion of electrons in metallic bodies,Proc. Amst. Acad. 7:438, 585, 604 (1905).Google Scholar
  6. 6.
    P. Ehrenfest,Collected Scientific Papers (North-Holland, Amsterdam, 1959), p. 229.Google Scholar
  7. 7.
    C. G. Langton, Studying artificial life with cellular automata,Physica D 22:120 (1986).Google Scholar
  8. 8.
    A. K. Dewdney, Two-dimensional Turing machines and Tur-mites make tracks on a plane,Sci. Am. 180 (September): 189 (1989);121(March):121 (1990).Google Scholar
  9. 9.
    L. A. Bunimovich and S. E. Troubetzkoy, Topological properties of flipping Lorentz gases,J. Stat. Phys. 72:297 (1993).Google Scholar
  10. 10.
    L. A. Bunimovich, Many-dimensional Lorentz cellular automata and Turing machines,Int. J. Bifurcation Chaos 6:1127 (1996).Google Scholar
  11. 11.
    X. P. Kong and E. G. D. Cohen, Anomalous diffusion in a lattice gas wind-tree model,Phys. Rev. B 40:4838 (1989).Google Scholar
  12. 12.
    L. A. Bunimovich and S. E. Troubetzkoy, Rotators, periodicity and absence of diffusion in cyclic cellular automata,J. Stat. Phys. 74:1 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • L. A. Bunimovich
    • 1
  1. 1.School of Mathematics and Center of Dynamical Systems and Nonlinear StudiesGeorgia Institute of TechnologyAthens

Personalised recommendations