Advertisement

Journal of Statistical Physics

, Volume 87, Issue 3–4, pp 821–845 | Cite as

Fermi gas on a lattice in the van Hove limit

  • T. G. Ho
  • L. J. Landau
Articles

Abstract

We study a Fermi gas with general translation-invariant many-body interactions on a (v≥3)-dimensional lattice. A complete analysis is given of the perturbative terms up to second order and the program put forward by N. M. Hugenholtz for the derivative of the Boltzmann equation is verified to second order.

Key Words

Fermi gas van Hove limit Boltzmann equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. M. Hugenholtz, Derivation of the Boltzmann equation for a Fermi gas,J. Stat. Phys. 32:231 (1983).Google Scholar
  2. 2.
    N. M. Hugenholtz, How theC *-algebraic formulation of statistical mechanics helps understanding the approach to equilibrium, inAMS Contemporary Mathematics, Vol. 62, P. E. T. Jorgensen and P. S. Muhly, eds. (American Mathematical Society, Providence, Rhode Island, 1987), p. 167.Google Scholar
  3. 3.
    T. G. Ho, L. J. Landau, and A. J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential,Rev. Math. Phys. 5:209 (1992).Google Scholar
  4. 4.
    N. Bleistein and R. H. Handelsman,Asymptotic Expansions of Integrals (Holt Rinehart and Wilson, New York, 1975).Google Scholar
  5. 5.
    L. J. Landau and J. Luswili, In preparation.Google Scholar
  6. 6.
    B. J. Stoyanov and R. A. Farrel, On the asymptotic evoluation of ∫0π/2 J 02(λsinx)dx,Math. Comp. 49:275 (1977).Google Scholar
  7. 7.
    T. G. Ho, Ph.D. Thesis, King's College London (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • T. G. Ho
    • 1
  • L. J. Landau
    • 2
  1. 1.Department of MathematicsUniversity of NottinghamNottinghamEngland
  2. 2.Department of MathematicsKing's CollegeLondonEngland

Personalised recommendations