Advertisement

Journal of Statistical Physics

, Volume 79, Issue 5–6, pp 993–1003 | Cite as

Frequency-independent rules for the dielectric susceptibility derived from two forms of self-similar dynamical behavior of dipolar systems

  • A. Jurlewicz
Short Communications

Abstract

This paper provides the frequency domain analysis of the probabilistic representation of the cluster model for dielectric relaxation in dipolar systems. It is proved that the restriction (0.1) experimentally found for both the powerlaw coefficientsn andm is the necassary and sufficient condition to obtain the low- and high-frequency power-law behavior. Consequently, in both frequency regions the Kramers-Krönig-compatible frequency-independent rules are fulfilled. Moreover, in contrast to the empirical functions proposed to fit the experimental data, the dielectric susceptibility derived from the stochastioc considerations does cover the full range of the observed dielectric responses.

Key Words

Dipolar materials dielecrtric susceptibility asymmetric Lévystable distributions max-stable distributions power-law dielectric response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Jonscher,Dielectric Relaxation in Solids (Chelea Dielectrics, London, 1983).Google Scholar
  2. 2.
    C. J. F. Böttcher and P. Bordewijk,Theory of Electronic Polarisation, Vol. 2 (Elsevier, Amsterdam, 1978).Google Scholar
  3. 3.
    L. A. Dissado and R. M. Hill,Proc. R. Soc. A 390:131 (1983).Google Scholar
  4. 4.
    M. P. Shlesinger and E. W. Montroll,Proc. Natl. Acad. Sci. USA 81:1280 (1984).Google Scholar
  5. 5.
    M. F. Shlesinger,J. Stat. Phys. 36:639 (1984).Google Scholar
  6. 6.
    E. W. Montroll and J. T. Bendler,J. Stat. Phys. 34:129 (1984).Google Scholar
  7. 7.
    R. G. Palmer, D. Stei, E. S. Abrahams, and P. W. Anderson,Phys. Rev. Lett. 53: 958 (1984).Google Scholar
  8. 8.
    J. Klafter and M. F. Shlesinger,Proc. Natl. Acad. Sci. USA 83:848 (1986).Google Scholar
  9. 9.
    S. H. Lui,Solid State Phys. 39:207 (1986).Google Scholar
  10. 10.
    L. A. Dissado and R. M. Hill,Chem. Phys. 111:193 (1983).Google Scholar
  11. 11.
    G. A. Niklasson,J. Appl. Phys. 62:R1 (1987).Google Scholar
  12. 12.
    L. A. Dissado and R. M. Hill,J. Appl. Phys. 66:2511 (1987).Google Scholar
  13. 13.
    K. L. Ngai and A. K. Rajagopal, and S. Teitler,J. Chem. Phys. 88:5086 (1988).Google Scholar
  14. 14.
    J. Klafter, A. Blumen, G. Zumofen, and M. F. Shlesinger,Physica A 168:637 (1990).Google Scholar
  15. 15.
    P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams, and J. P. Carini,Phys. Rev. Lett.,65:1108 (1990).Google Scholar
  16. 16.
    K. L. Ngai, R. W. Rendell, and D. J. Plazek,J. Chem. Phys. 94:10138 (1991).Google Scholar
  17. 17.
    H. J. Queisser,Appl. Phys. A 52:261 (1991).Google Scholar
  18. 18.
    K. Weron,J. Phys.: Condens. Matter 3:951 (1991).Google Scholar
  19. 19.
    A. Hunt,J. Phys.: Condens. Matter 4:10503 (1992).Google Scholar
  20. 20.
    K. Weron,J. Phys.: Condens. Matter 4:10507 (1992).Google Scholar
  21. 21.
    K. Weson and A. Jurlewicz,J. Phys. A: Math. Gen. 26:395 (1993).Google Scholar
  22. 22.
    A. Jurlewicz and K. Weron,J. Stat. Phys. 73:69 (1993).Google Scholar
  23. 23.
    A. Jurlewicz, K. Kosmulski, and K. Werson,Proceedings of “Dielectrics and Related Phenomena” Conferecne, (Zakopane, Poland, 1994).Google Scholar
  24. 24.
    A. Janicki an A. Weron,Simulation and Chaotic Behavior of α-Stable Stochastic Processe (Marcel Dekker,. New York, 1993).Google Scholar
  25. 25.
    M. R. Leadbetter, G. Lindgren, and H. Rootzen,Exttremes and Related Properties of Random Sequences and Processes (Spriger-Verlag, New York, 1986).Google Scholar
  26. 26.
    V. M. Zolotariev,One-dimensional Stable Distributions (American Mathematical Society, Providence, Rhode Island, 1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Jurlewicz
    • 1
  1. 1.Hugo Steinhaus Center for Stochastic MethodsTechnical University of WrocławWrocławPoland

Personalised recommendations