Advertisement

Acta Mathematica Hungarica

, Volume 73, Issue 3, pp 235–245 | Cite as

G-pseudomanifolds

  • R. Popper
Article
  • 21 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Brasselet, G. Hector and M. Saralegi, Théoréme de De Rham pour les variétés stratifiées,Ann. Global Anal. Geom.,9 (1991), 211–243.Google Scholar
  2. [2]
    G. Bredon,Introduction to Compact Transformation Groups, Academic Press (New York, 1972).Google Scholar
  3. [3]
    J. Brylinski,Equivariant Intersection Cohomology, Publications Amer. Math. Soc. (1992).Google Scholar
  4. [4]
    M. Goresky and R. Mac Pherson, Intersection homology theory,Topology,19 (1980), 135–162.Google Scholar
  5. [5]
    M. Goresky and R. Mac Pherson, Intersection homology II,Invent. Math.,71 (1983), 77–129.Google Scholar
  6. [6]
    G. Hector and M. Saralegi, Intersection cohomology ofS 1 actions,Trans. Amer. Math. Soc.,338 (1993), 263–288.Google Scholar
  7. [7]
    F. Quinn, Homotopically stratified sets,Jour. Amer. Math. Soc.,1-2 (1988), 441–499.Google Scholar
  8. [8]
    L. Siebenmann, Deformations of homeomorphisms on stratified sets,Com. Math. Helvetici,47 (1972), 123–163.Google Scholar
  9. [9]
    A. Verona,Stratified Mappings-structure and Triangulability, Lect. Notes in Math.1102, Springer (1984).Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • R. Popper
    • 1
  1. 1.Departamento de Matematicas Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations